Award Abstract # 2309530
Adaptive Hybrid Method for Radiative Transfer and Related Applications

NSF Org: DMS
Division Of Mathematical Sciences
Recipient: AUBURN UNIVERSITY
Initial Amendment Date: July 17, 2023
Latest Amendment Date: July 17, 2023
Award Number: 2309530
Award Instrument: Standard Grant
Program Manager: Jodi Mead
jmead@nsf.gov
 (703)292-7212
DMS
 Division Of Mathematical Sciences
MPS
 Direct For Mathematical & Physical Scien
Start Date: September 1, 2023
End Date: August 31, 2026 (Estimated)
Total Intended Award Amount: $209,173.00
Total Awarded Amount to Date: $209,173.00
Funds Obligated to Date: FY 2023 = $209,173.00
History of Investigator:
  • YIMIN ZHONG (Principal Investigator)
    yzz0225@auburn.edu
Recipient Sponsored Research Office: Auburn University
321-A INGRAM HALL
AUBURN
AL  US  36849-0001
(334)844-4438
Sponsor Congressional District: 03
Primary Place of Performance: Auburn University
321-A INGRAM HALL
AUBURN
AL  US  36849-0001
Primary Place of Performance
Congressional District:
03
Unique Entity Identifier (UEI): DMQNDJDHTDG4
Parent UEI:
NSF Program(s): COMPUTATIONAL MATHEMATICS,
EPSCoR Co-Funding
Primary Program Source: 01002324DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 9263
Program Element Code(s): 127100, 915000
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.049, 47.083

ABSTRACT

The overall purpose of this project is to develop new directions of scientific computing for photon-based imaging applications by bringing the advantages of existing numerical methods. The commonly used model for these applications (e.g. biomedical imaging, clinical radiotherapy treatment planning, security scan) is known as the radiative transport equation (RTE). Computationally, finding an accurate solution to RTE is very challenging due to its high dimensionality. Although many studies and developments of numerical methods solving RTE are based on differential formulation, the methods that are based on integral formulation are not fully understood. In this project, the investigator focuses on developing efficient computational tools based on the adaptive hybrid formulation by combining the advantages of both differential and integral formulations. The algorithm will benefit a broad class of forward and inverse problems. It could also be extended to various applications based on nonlocal PDE models. The proposed methods will benefit biomedical imaging, national security, and biofuel development. The developed mathematical tools and computational algorithms will be disseminated broadly to advance scientific and technological progress in these areas. Education and training plans at multiple levels will be provided for future researchers in computational mathematics and related interdisciplinary areas. Supervised research projects and seminars related to this proposed research will be available to junior/senior undergraduates and graduate students. The investigator aims to recruit underrepresented and minority groups to participate in the project by providing them with more opportunities and possibilities. This project is jointly funded by the Computational Mathematics Program and the Established Program to Stimulate Competitive Research (EPSCoR).

The project will start with the integral formulation of RTE to derive and analyze the adaptive hybrid numerical algorithm for it. The analysis will help to determine a balanced combination of short-range differential and long-range integral operators. Computationally, an efficient approximation of the hybrid formulation covering both short and long range interactions that could be a suitable preconditioner for RTE will be developed. Rigorous analysis and fast numerical reconstruction algorithms based on the adaptive hybrid formulation will be investigated for nuclear resonance fluorescence imaging, fluorescent lifetime imaging, RTE identification, and phototaxis navigation.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page