Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact gardening on Europa and repercussions for possible biosignatures

Abstract

Owing to its internal ocean, Jupiter’s moon Europa can potentially host extant life. However, because Europa’s orbit is within Jupiter’s magnetosphere, chemical biosignatures that are exposed to space may be destroyed by high-energy electron radiation. It has been suggested that biosignatures may be preserved below the radiation-penetration depth of the top few centimetres. Impact gardening, the process by which small impacts mechanically churn the uppermost surface of airless bodies, is known to disrupt near-surface stratigraphy; however, no comprehensive estimate of the effect of gardening has yet been determined for Europa. Here we use an impact gardening model to show that gardening is a global process on Europa, and has churned, on average, the top 30 cm over the last several tens of millions of years, thus, exposing all material within the top 30 cm to surface radiation. We suggest that morphologically immature craters and regions of mass wasting at mid-to-high latitudes could be weakly impacted by both gardening and radiation, and should be preferred locations for the search for life on Europa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The impact rate at Europa.
Fig. 2: Modelled impact gardening.
Fig. 3: Gardening by region.

Similar content being viewed by others

Data availability

All the impact gardening results reported can be reproduced using the equations and parameters provided in this paper. We reference parameters for scaling impactor diameter to crater diameter from table 1 of Costello et al.17. We also reference impact flux information available in Zahnle et al.29, radiation flux information from Nordheim et al.7 and crater size–frequency distributions reported in Bierhaus et al.15,26,27. Source data are provided with this paper.

References

  1. Chyba, C. F. Energy for microbial life on Europa. Nature 403, 381–382 (2000).

    Article  ADS  Google Scholar 

  2. Chyba, C. F. & Phillips, C. B. Europa as an abode of life. Orig. Life Evol. Biosph. 32, 47–67 (2002).

    Article  ADS  Google Scholar 

  3. Hand, K. P., Chyba, C. F., Priscu, J. C., Carlson, R. W. & Nealson, K. H. in Europa (eds Pappalardo, R. T. et al.) 589–629 (Univ. Arizona Press, 2009).

  4. Sparks, W. B. et al. Probing for evidence of plumes on Europa with HST/STIS. Astrophys. J. 829, 121 (2016).

    Article  ADS  Google Scholar 

  5. Sparks, W. B. et al. Active cryovolcanism on Europa? Astrophys. J. Lett. 839, L18 (2017).

    Article  ADS  Google Scholar 

  6. Jia, X., Kivelson, M. G., Khurana, K. K. & Kurth, W. S. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures. Nat. Astron. 2, 459–464 (2018).

    Article  ADS  Google Scholar 

  7. Nordheim, T. A., Hand, K. P. & Paranicas, C. Preservation of potential biosignatures in the shallow subsurface of Europa. Nat. Astron. 2, 673–679 (2018).

    Article  ADS  Google Scholar 

  8. Swindle, T. D., Masarik, J., Kollár, D., Kim, K. J. & Reedy, R. C. Production of noble gases near the surface of Europa and the prospects for in situ chronology. Icarus 174, 205–214 (2005).

    Article  ADS  Google Scholar 

  9. Fruchter, J. S., Rancitelli, L. A., Evans, J. C. & Perkins, R. W. Lunar surface processes and cosmic ray histories over the past several million years. In Lunar and Planetary Science Conference Proceedings Vol. 9, 2019–2032 (Pergamon Press, 1978).

  10. Morris, R. V. In situ reworking/gardening/of the lunar surface-Evidence from the Apollo cores. In Lunar and Planetary Science Conference Proceedings Vol. 9, 1801–1811 (Pergamon Press, 1978).

  11. Cooper, J. F., Johnson, R. E., Mauk, B. H., Garrett, H. B. & Gehrels, N. Energetic ion and electron irradiation of the icy Galilean satellites. Icarus 149, 133–159 (2001).

    Article  ADS  Google Scholar 

  12. Ip, W. H., Williams, D. J., McEntire, R. W. & Mauk, B. H. Ion sputtering and surface erosion at Europa. Geophys. Res. Lett. 25, 829–832 (1998).

    Article  ADS  Google Scholar 

  13. Molaro, J. L. et al. The microstructural evolution of water ice in the Solar System through sintering. J. Geophys. Res. Planets 124, 243–277 (2019).

    Article  ADS  Google Scholar 

  14. Moore, J. M. et al. in Europa (eds Pappalardo, R. T. et al.) 329–349 (Arizona Univ. Press, 2009).

  15. Bierhaus, E. B., Chapman, C. R. & Merline, W. J. Secondary craters on Europa and implications for cratered surfaces. Nature 437, 1125–1127 (2005).

    Article  ADS  Google Scholar 

  16. Costello, E. S., Ghent, R. R. & Lucey, P. G. The mixing of lunar regolith: vital updates to a canonical model. Icarus 314, 327–344 (2018).

    Article  ADS  Google Scholar 

  17. Costello, E. S., Ghent, R. R., Hirabayashi, M. & Lucey, P. G. Impact gardening as a constraint on the age, source, and evolution of ice on Mercury and the Moon. J. Geophys. Res. Planets 125, e2019JE006172 (2020).

    Article  ADS  Google Scholar 

  18. Minton, D. A., Fassett, C. I., Hirabayashi, M., Howl, B. A. & Richardson, J. E. The equilibrium size-frequency distribution of small craters reveals the effects of distal ejecta on lunar landscape morphology. Icarus 326, 63–87 (2019).

    Article  ADS  Google Scholar 

  19. Gault, D. E., Hörz, F., Brownlee, D. E. & Hartung, J. B. Mixing of the lunar regolith. Lunar and Planetary Science Conference Proceedings Vol. 5, 2365–2386 (Pergamon Press, 1974).

  20. Hartmann, W. K. & Gaskell, R. W. Planetary cratering 2: Studies of saturation equilibrium. Meteorit. Planet. Sci. 32, 109–121 (1997).

    Article  ADS  Google Scholar 

  21. Xiao, Z. & Werner, S. C. Size-frequency distribution of crater populations in equilibrium on the Moon. J. Geophys. Res. Planets 120, 2277–2292 (2015).

    Article  ADS  Google Scholar 

  22. Hirabayashi, M., Minton, D. A. & Fassett, C. I. An analytical model of crater count equilibrium. Icarus 289, 134–143 (2017).

    Article  ADS  Google Scholar 

  23. Arnold, J. R. Monte Carlo simulation of turnover processes in the lunar regolith. In Lunar and Planetary Science Conference Proceedings Vol. 6, 2375–2395 (Pergamon Press, 1975).

  24. McEwen, A. S. et al. The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus 176, 351–381 (2005).

    Article  ADS  Google Scholar 

  25. Holsapple, K. A. The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci. 21, 333–373 (1993).

    Article  ADS  Google Scholar 

  26. Bierhaus, E. B., Chapman, C. R., Merline, W. J., Brooks, S. M. & Asphaug, E. Pwyll secondaries and other small craters on Europa. Icarus 153, 264–276 (2001).

    Article  ADS  Google Scholar 

  27. Bierhaus, E. Discovery That Secondary Craters Dominate Europa’s Small Crater Population. PhD thesis, Univ. Colorado (2004).

  28. Speyerer, E. J., Povilaitis, R. Z., Robinson, M. S., Thomas, P. C. & Wagner, R. V. Quantifying crater production and regolith overturn on the Moon with temporal imaging. Nature 538, 215–218 (2016).

    Article  ADS  Google Scholar 

  29. Zahnle, K., Schenk, P., Levison, H. & Dones, L. Cratering rates in the outer Solar System. Icarus 163, 263–289 (2003).

    Article  ADS  Google Scholar 

  30. Zahnle, K., Dones, L. & Levison, H. F. Cratering rates on the Galilean satellites. Icarus 136, 202–222 (1998).

    Article  ADS  Google Scholar 

  31. Levison, H. F., Duncan, M. J., Zahnle, K., Holman, M. & Dones, L. Planetary impact rates from ecliptic comets. Icarus 143, 415–420 (2000).

    Article  ADS  Google Scholar 

  32. Tsuji, D. & Teanby, N. A. Europa’s small impactor flux and seismic detection predictions. Icarus 277, 39–55 (2016).

    Article  ADS  Google Scholar 

  33. Hueso, R. et al. Impact flux on Jupiter: From superbolides to large-scale collisions. Astron. Astrophys. 560, A55 (2013).

    Article  Google Scholar 

  34. Howell, S. M. & Pappalardo, R. T. Band formation and ocean‐surface interaction on Europa and Ganymede. Geophys. Res. Lett. 45, 4701–4709 (2018).

    Article  ADS  Google Scholar 

  35. Nishiizumi, K., Welten, K. C. & Caffee, M. W. Recent deposition and mixing history of the Apollo 17 drill core 70009-70001. In Lunar and Planetary Science Conference 2132 (Lunar and Planetary Institute, 2019).

Download references

Acknowledgements

This work was supported and facilitated by a summer internship with the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) Summer Internship Program and by a NASA Solar System Workings Program grant to the University of Hawaii (grant number 6107932: ‘An Analytic Model for Impact Gardening Across the Solar System’; to E.S.C., R.R.G. and P.G.L.). E.S.C. and C.B.P. were partially funded by the Europa Lander Mission Concept at JPL.

Author information

Authors and Affiliations

Authors

Contributions

E.S.C. was the primary contributor to the development of the model described in this work, produced the figures, performed the scientific analysis and wrote the manuscript. C.B.P. contributed to the formulation of the scientific question addressed in this work, the scientific analysis, and the editing and revision of the manuscript. R.R.G. contributed to the model development and execution and to the editing and revision of the manuscript. P.G.L. contributed by securing the funding that supported this work, by assisting in model development, and to the editing and revision of the manuscript.

Corresponding author

Correspondence to E. S. Costello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Mihaly Horanyi, Micah Schaible and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Fig. 1

Cumulative crater count data and model solutions to reproduce the plot in Fig. 1.

Source Data Fig. 2

Impact gardening model results as a function of probability, including cumulative Poisson distribution values for λ, and gardening calculations as a function of time.

Source Data Fig. 3

Impact gardening results as a function of probability using the Bierhaus et al. crater counts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costello, E.S., Phillips, C.B., Lucey, P.G. et al. Impact gardening on Europa and repercussions for possible biosignatures. Nat Astron 5, 951–956 (2021). https://doi.org/10.1038/s41550-021-01393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01393-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing