
Computer Science
Standards for
California Public Schools

Kindergarten through Grade Twelve

Adopted by the California
State Board of Education
August 2018

C
o

m
p

u
ter S

cien
ce S

ta
n

d
a

rd
s fo

r C
alifo

rn
ia P

u
b

lic S
ch

o
o

ls: K
in

d
erg

a
rten th

ro
u

g
h G

rad
e T

w
elve

ISB
N 978-0-8011-1809-8

Adopted by the California State Board of Education
August 2018

Computer Science
Standards for
California Public Schools

Kindergarten through Grade Twelve

ii | Publishing Information

Publishing Information

The California Department of Education (CDE), Instructional
Quality Commission (IQC), and State Board of Education (SBE)
commenced the process for developing new California computer
science content standards in September 2016. Per California
Education Code Section 60605.4, “on or before July 31, 2019, the
Instructional Quality Commission shall consider developing and
recommending to the SBE computer science content standards
for kindergarten and grades 1 to 12, inclusive, pursuant to
recommendations developed by a group of computer science
experts.” On September 6, 2018, the SBE adopted the California
Computer Science Standards for Public Schools, Kindergarten
Through Grade Twelve.

Portions of this work are based on the K–12 Computer Science
Framework. Licensed under Creative Commons (CC-BY-NC-SA-4.0).

When the SBE adopted the Computer Science Standards, the
members of the IQC were Dean Reese, Chair; Soomin Chao, Vice
Chair; Jocelyn Broemmelsiek; Christine Chapman; Lizette Diaz;
Shay Fairchild; Jose Flores; Jose Iniguez; Risha Krishna; Jose Lara;
Yolanda Muñoz; Melanie Murphy-Corwin; Nicole Naditz; Alma-
Delia Renteria; Julie Tonkovich; Jennifer Woo; and Sharon Quirk-
Silva, Assemblywoman. The members of the SBE were Michael W.
Kirst, President; Ilene W. Straus, Vice President; Sue Burr; Bruce
Holaday; Feliza I. Ortiz-Licon; Patricia A. Rucker; Niki Sandoval;

Ting L. Sun; Karen Valdes; Trish Williams; and Gema Q. Cardenas,
Student Member.

This publication was edited by Alex Calinsky, CDE Press, working
in cooperation with Renée Ousley-Swank, Curriculum Frameworks
and Instructional Resources Division. The document was prepared
for publication by the staff of CDE Press; Aristotle Ramirez created
the cover and interior design. It was published by the Department
of Education, 1430 N Street, Sacramento, CA 95814, and was
distributed under the provisions of the Library Distribution Act and
Government Code Section 11096.

© 2021 by the California Department of Education
All rights reserved

ISBN 978-0-8011-1809-8

Additional Publications
and Educational Resources
For information about publications and educational resources
available from the California Department of Education, please
visit the CDE Press Educational Resources web page at https://
cdep.klas.com/ or call the CDE Press sales office at 1-800-995-
4099. Reproduction of this document for resale, in whole or in
part, is not authorized.

https://cdep.klas.com/
https://cdep.klas.com/

Contents | iii

Contents

Computer science is no more about computers
than astronomy is about telescopes.
—Anonymous, at times attributed to Edsger Dijkstra

A Message from the State Superintendent of Public Instruction and the State Board of Education1
Special Acknowledgements ..3
Vision ...5
Why Computer Science? ...8
Equity Issues ..10
Problem Solving and the Four Cs ..12
What is Computer Science? ..15

Computer Science Core Concepts .. 17
Computer Science Core Practices .. 20

California K–12 Computer Science Standards ...30
K–2 .. 30
3–5 ... 50
6–8 ... 73
9–12 .. 97
9–12 Specialty... 127

References and Attributions ...157
California Computer Science Standards: Appendix ..159

Page iv intentionally blank.

A Message | 1

science courses are from these demographic groups. In the
technology workforce, Latinx and African Americans represent
about 15 percent of employees. The State Superintendent believes
public education can play a critical role in dismantling systemic
racism and historic barriers to opportunity in ways that help
schools achieve educational equity.

Designed to help students move from being passive users of
technology to becoming creators and innovators, the standards
go beyond the goal of students learning to code and motivate
students to communicate as scientists and find creative solutions
to difficult problems. These standards provide our students with
a deeper understanding of computer science that prepares them
for careers and college and helps them succeed in a fiercely
competitive global economy.

Computer science as a foundational discipline that should be
accessible to all students is a relatively new concept in K–12
education. Computer science is the study of how technology and
computing systems are created and their impact on society. The
standards cover six core computer science concepts (such as
algorithms and programming) and seven core practices (such as
creating computational artifacts and recognizing computational
problems). By contrast, learning to type, word processing, and
computer repair are not within the scope of computer science as
defined by the standards.

The Computer Science Standards for California Public Schools,
Kindergarten Through Grade Twelve is now available in its final
format. The standards may be found on the CDE website at https://
www.cde.ca.gov/be/st/ss/computerscicontentstds.asp. These
standards, adopted by the State Board of Education in September
2018, set a groundbreaking vision for learning expectations that
will help each student reach their creative potential in our digitally
connected world. Computer science education not only enables
students to understand how their digital world works, but it also
encourages critical thinking and discussion around the broader
ethical and social implications, including questions related to the
growing capabilities of technology.

The California Computer Science Standards are based on the
computer science core concepts and core practices, aligned
to the K–12 Computer Science Framework. The standards were
developed utilizing previous work by the Computer Science
Teachers Association. The standards are designed to be accessible
to each and every student in California.

Additionally, the standards place a strong emphasis on equity
by providing educators with examples of ways they can broaden
participation in computer science to include students who have
not historically been provided the opportunity. While 60 percent
of California’s student population is Latinx or African American,
only about 25 percent of students who take high school computer

A Message from the State
Superintendent of Public Instruction
and the State Board of Education

https://www.cde.ca.gov/be/st/ss/computerscicontentstds.asp
https://www.cde.ca.gov/be/st/ss/computerscicontentstds.asp

California Department of Education2 | A Message

We encourage educators to utilize the computer science
standards to develop curriculum, instruction, and assessment,
which are the foundation of quality computer science learning
in our schools, and we urge local educational agencies to
ensure access to computer science learning for each student in
California.

California Department of Education Acknowledgements | 3

Special recognition is awarded to the following additional CDE
staff who contributed to this document: Lisa Grant, Education
Programs Consultant, Curriculum Frameworks and Instructional
Resources Division; Erle Hall, Education Programs Consultant,
Career Technical Education Leadership and Instructional Support
Office; Letty Kraus, Education Programs Consultant, Curriculum
Frameworks and Instructional Resources Division; Emily Oliva,
Education Programs Consultant, Educator Excellence and Equity
Division; and Tracie Yee, Associate Governmental Program Analyst,
Curriculum Frameworks and Instructional Resources Division.

The State Board of Education extends its appreciation to the
standards writing team: Katherine Goyette, Tulare County Office of
Education; Aleata Hubbard, WestEd and Yvonne Kao, WestEd.

The State Board of Education extends its appreciation to the
following members of the Computer Science Standards Advisory
Committee contributed to the development of the standards
document: Beth Simon Co-Chair; Bryan Twarek Co-Chair; Casey
Agena; Jared Amalong; Stephen Callahan; Joseph Chipps;
Christina Cowan-Hastle; Myra Deister; Nathan Drown; William
Epps; Veronica Godinez; Ann Greyson; Richard Kick; Smita
Kolhatkar; Steve Kong; Arthur Lopez; Elyse Sharp; Kevin Tambara;
Gina Thackrey; and Andrew Williams.

Special appreciation is extended to Dr. Stephanie Gregson,
Director, Curriculum Frameworks and Instructional Resources
Division; Kristen Cruz-Allen, Administrator, Curriculum Frameworks
and Instructional Resources Division; Cliff Rudnick, Administrator,
Curriculum Frameworks and Instructional Resources Division;
Paula Evans, Education Programs Consultant/Co-Lead for the
development of the California Computer Science Standards,
Professional Learning Support Division; and Renée Ousley-Swank
Education Programs Consultant/Co-Lead for the development
of the California Computer Science Standards, Curriculum
Frameworks and Instructional Resources Division.

Special Acknowledgements

Page 4 intentionally blank.

Vision | 5

VisionVision

The California Computer Science Standards (hereafter referred
to as “the standards”) are based on computer science core
concepts and core practices, aligned to the K–12 Computer
Science Framework. The standards were developed by educators
(members of the State Board of Education-appointed Computer
Science Standards Advisory Committee), utilizing work done
by the Computer Science Teachers Association. The standards
are designed to be accessible for each and every student in
California. The standards inform teachers, curriculum developers,
and educational leaders to ensure all students receive quality
computer science instruction. Each standard includes a
descriptive statement and examples for classroom application.
Examples are not meant to be prescriptive or compulsory. Rather,
they are designed as general suggestions.

Educators are encouraged to design computer science learning
experiences, according to their local capacity and context, to meet
the needs of their students. Computer science core concepts
and practices in the standards are vertically aligned, coherent
across grades, and designed in developmentally appropriate grade
spans: K–2, 3–5, 6–8, and 9–12. The K–12 standards are referred
to as “core.” The ninth grade-to-twelfth grade span also includes
an additional set of standards, referred to as “9–12 Specialty,”
which provides options for extending a pathway in computer
science with content containing increased complexity and depth.

California Department of Education

The 9–12 Specialty standards may be used to create electives
that are outside an introductory course. As students progress
through the standards from kindergarten to twelfth grade, they
build conceptual knowledge through active engagement in creative
problem-solving activities with an awareness of cultural and
societal contexts.

Computers have been used in classrooms across the state for
many years. However, students often take a passive role as mere
users of these devices. The standards empower students to
deepen their understanding of computer science as they explore
core concepts, such as: the composition of computing systems
(CS), the connective power of networks and information systems
(NI), the informational potential of data and analysis processing
(DA), the development of algorithms and programming (AP), and
the impacts of computing on culture and society (IC). These core
concepts provide foundational knowledge on key ideas, which
build upon each other as students progress through grade spans.
The computer science core concepts are covered in greater detail
in the “What is Computer Science?” section.

The computer science core practices infuse computer science core
concepts with purpose and relevance. The core practices focus
on how students interact with computer science—as in, the ways
they apply conceptual knowledge. These core practices enable

6 | Vision California Department of Education

students to experience computer science as a creative process.
Instead of merely using computing technology, students are
actively creating and innovating, engaging with computer science
as an artistic and collaborative endeavor. As students engage
in the computer science core practices, they learn to persevere
in solving authentic, community-based problems grounded in
computer science core concepts. The computer science core
practices, covered in greater detail in the “What is Computer
Science?” section, include:

1. Fostering an Inclusive Computing Culture

2. Collaborating Around Computing

3. Recognizing and Defining Computational Problems

4. Developing and Using Abstractions

5. Creating Computational Artifacts

6. Testing and Refining Computational Artifacts

7. Communicating About Computing

The standards integrate computer science practices with concept
statements.

Practice + Concept = Standard

Creating Computational Artifacts

The process of developing computational
artifacts embraces both creative expression

and the exploration of ideas to create
prototypes and solve computational

problems. Students create artifacts that
are personally relevant or beneficial to their

community and beyond. Computational
artifacts can be created by combining and
modifying existing artifacts or by developing

new artifacts.

Computing Systems

Hardware and software determine a
computing system’s capability to store
and process information. The design or

selection of a computing system involves
multiple considerations and potential

tradeoffs, such as functionality, cost, size,
speed, accessibility, and aesthetics.

6-8.CS.2

Design a project that combines hardware
and software components to collect and

exchange data.

Vision | 7

The standards contain significant themes, as referenced in the
K–12 Computer Science Framework, include:

§ Equity. Issues of equity, inclusion, and diversity are
addressed in concepts and practices, the standards, and
in examples of ways to broaden participation in computer
science education listed in the appendix.

§ Powerful ideas. The concepts and practices evoke
authentic, powerful ideas that can be used to solve real-
world problems and connect understanding across multiple
disciplines (Papert 2000).

§ Computational thinking. Computational thinking is
the human ability to formulate problems so that their
solutions can be represented as computational steps or
algorithms to be executed by a computer. Computational
thinking practices such as abstraction, modeling, and
decomposition intersect with computer science concepts
such as algorithms, automation, and data visualization.

§ Breadth of application. Computer science is more than
coding. It involves physical systems and networks; the
collection, storage, and analysis of data; and the impact of
computing on society. This broad view of computer science
emphasizes the range of applications that computer science
has in other fields.

As a field, computer science crosses multiple disciplines. To
accurately reflect the field, the standards are interdisciplinary
in nature to ensure that every student learns computer science

core concepts in relevant contexts. The standards are consistent
with State Board of Education-adopted curriculum standards
in their emphasis on problem solving, communication, critical
thinking, creativity, and collaboration. Many standards include
interdisciplinary examples and the appendix provides additional
cross-referenced alignment charts by grade level. The standards
also complement the Career Technical Education (CTE) Standards
for California Public Schools.

California Department of Education

Why Computer Science?

Computer science is an essential component of a broad and
comprehensive education, containing necessary foundational
concepts and corresponding practices that generate opportunities
for success in our increasingly competitive, globally connected
economy. Computing systems are more than tools, as they have
the power to facilitate personal and creative expression. As
illustrated in the K–12 Computer Science Framework, computers
are both the paint and paintbrush. Computer science education
creates the artists.

Digital technologies are largely responsible for the global
connectivity of the economy, and the impact of computer science
on multiple areas of the human endeavor continues to increase
rapidly. However, computer science education has not kept pace
with this increased influence on society. The standards are an
integral part of preparing students for their college and career.
Student interest in computer science at the postsecondary level
is increasing, and job opportunities in STEM fields are increasing.
Since 2010, computer science ranks as one of the fastest
growing undergraduate majors of all STEM fields (Fisher 2015),
and Advanced Placement (AP) Computer Science A is the fastest
growing AP course, despite being offered in only 5 percent of
schools (Code.org 2015). The launch of AP Computer Science
Principles was the largest course launch in history (College Board
2018). Despite the growth of AP Computer Science Principles, a

8 | Why Computer Science?

mere 0.5 percent of high school students in California took the AP
Computer Science A exam in 2016 (College Board 2016). Jobs
that use computer science are some of the highest paying, highest
growth (US Department of Labor, Bureau of Labor Statistics
2015), and most in-demand jobs that underpin the economy
(The Conference Board 2016). The computer science field has
a shortage of engineers and programmers and an increase in
computer science education is vital to fill this need (DeNisco
Rayome 2017).

While the aforementioned statistics highlight the growing need
for computer science specialty courses, it is just as necessary
that computer science be included as a core subject for every
student in grade levels K–12. Computer science core concepts
and practices can prepare all students for their college and
career, even if they do not pursue a computer science degree or
occupation. The computer science core practices help develop
lifelong learners that persevere in the processes of creative
problem solving in a way that promotes inclusion and celebrates
diversity. Computer science core concepts provide foundational
knowledge of computing principles, giving students opportunities
to develop as computational, logical thinkers who carefully weigh
the societal and cultural impacts of computing. The standards
foster responsible citizenship, as they include themes of equity,
engage students in practices that promote an inclusive computing

Why Computer Science?

Why Computer Science? | 9

culture, and guide students toward responsible protection and
use of information in networks and the internet. Students who
study computer science become informed citizens who develop
conceptual knowledge of how computing technology works and
also contribute productively to society as a whole.

Computer science prepares students for the future and also
fosters skills that support their education in the present, furthering
their development and motivation as learners. The importance of
computer science is recognized at a national level, with the Every
Student Succeeds Act defining computer science as part of a
“well-rounded education” (2015). Computer science education
cultivates personal fulfillment by motivating students to become
innovators. Students can build confidence in solving complex,
open-ended problems by designing, creating, and developing
computational artifacts. Computer science education is often
implemented using a project-based approach, encouraging
educators to actively engage students via solid pedagogical
practices that empower learners to construct knowledge in a
student-led environment.

The general public recognizes the need for computer science
inclusion as a core subject for all students. Americans believe
computer science is as important to learn as reading, writing, and
math (Horizon Media 2015). While 90 percent of U.S. parents want
their child to learn computer science, there is a disconnect from
school administrators—only 7 percent of principals say there is a
high demand for computer science among parents (Google and
Gallup 2015, 12). It is vital that school administrators address this
disconnect and align their vision to the communities they serve.

The standards are designed to increase access of computer
science instruction for all students, as a core subject in addition
to specialty courses. Computer science instruction empowers
students, giving them confidence to use computers and computing
tools to solve problems. As students learn computer science,
they build an understanding of the importance of computing and
computing tools. The standards prepare all students to enter
their college and career as critical consumers and thoughtful
computing technology creators and innovators.

California Department of Education10 | Equity Issues

Equity Issues

California schools house the largest, most diverse population of
students in the United States (California Department of Education
2016). As such, it is imperative that all core subjects, including
computer science, are not merely inclusionary, but that instruction
uses practices that actively engage students and increase
access for underserved populations. Equity in computer science
education does not equate to preparing all students to major
in computer science at the post-secondary level, or to pursue
careers in software engineering or other areas of computing
technologies. Rather, computer science education for all ensures
that every student develops a foundation of conceptual knowledge
and proficiency in computer science practices, which provides the
skills to responsibly and productively participate in a world with
broadly integrated digital technologies.

Equity is more than an availability of computer science classes—it
requires leaders and educators to carefully consider the following:
inclusive practices regarding how classes are taught, student
recruitment and retention, instructional practices that guarantee
universal access, and high expectations for all students. Computer
science is not designed to be offered only to a select few, or as an
elective for interested students. Equity in computer science calls for
leaders and educators to guarantee computer science instruction
for all students, as an essential core subject that is a necessary and
valuable component of a comprehensive education.

Historically, computer science has been inaccessible to the
majority of K–12 students. Approximately 65 percent of high
schools in California offer no computing classes (Level Playing
Field Institute 2016, 7). Computer science education rates at the
K–8 level are even more dismal. While 59 percent of California’s
student population is Latinx or African American, these students
comprise only 11 percent of students taking AP Computer Science
A and 9 percent of the computing workforce nationwide (Level
Playing Field Institute 2016, 8). While female students are 49
percent of the population, they comprised only 24 percent of
AP Computer Science A test takers in California (Level Playing
Field Institute 2016, 7). Students in small town or rural school
districts face a digital divide despite their need for computer
science education. While 86 percent of students in small town or
rural school districts are somewhat or very likely to indicate they
will have a job in the future that requires knowledge of computer
science, and 92 percent express interest in learning computer
science, principals from these schools are 7 percent less likely
to indicate that computer science is a priority, when compared to
principals from suburban and large city school districts (Google
and Gallup 2017).

The standards are designed for all students, including underserved
populations: girls, low-income students, homeless students,
rural students, African-American and Latinx students, students

Equity Issues

Equity Issues | 11

who are English learners, students with disabilities, and foster
youth. Students’ access to and achievement in computer science
must not be predictable on the basis of race, ethnicity, gender,
socioeconomic status, language, religion, sexual orientation,
cultural affiliation, or special needs. All students are to be given
access to computer science instruction as a core subject. To
guarantee equitable access to computer science education
regardless of socioeconomic status, many computer science
concepts and practices can be learned with or without a computer
or other digital device. Guidance for ensuring universal access to
the standards through flexible implementation options is available
in the standards appendix.

Computer science instruction has the potential to promote and
foster inclusion, diversity, and equity. At its best, computer science
focuses on user needs and continually increases accessibility
through iterative development processes. This inclusive, user-
centric mindset within computer science led to innovations in
computing technology, such as wearable hearing aid devices,
real-time translation services, and accessibility options, within
computing hardware and software for individuals with disabilities,
among others. The standards encourage students to study
computer science core concepts within a context of its potential
impacts on both local and global communities. These core
concepts are coupled with core computer science practices that
expressly require students to foster an inclusive computing culture
addressing diverse needs and unique perspectives. As such, the
study of computer science is a key factor in developing student
empathy and celebrating diversity.

California Department of Education12 | Problem Solving and the Four Cs

Problem Solving and the Four Cs

Colleges and careers of the future will require students to problem
solve and demonstrate the Four Cs: collaboration, critical thinking,
creativity, and communication. These skills are echoed throughout
the California Common Core State Standards for many subjects.
The California computer science standards similarly emphasize
these skills.

As a field, computer science itself incorporates problem solving,
communication, critical thinking, creativity, and collaboration
into its work. The following is a representation of the California
computer science core practices and their alignment to equity,
problem solving, and the Four Cs.

Core Practice 1: Equity
Fostering an Inclusive Computing Culture

Core Practice 2: Collaboration
Collaborating Around Computing

Core Practice 3: Problem Solving
Recognizing and Defining Computational Problems

Core Practice 4: Critical Thinking
Developing and Using Abstractions

Core Practice 5: Creativity
Creating Computational Artifacts

Core Practice 6: Creativity
Testing and Refining Computational Artifacts

Core Practice 7: Communication
Communicating About Computing

Problem Solving and the Four Cs

Problem Solving and the Four Cs | 13

Collaboration in computer science fosters contributions and
feedback from others, which may result in improved outcomes as
opposed to working independently. Core Practice 2, Collaborating
Around Computing, encourages students to work in collaborative
teams. A particular emphasis is placed on effective collaboration
techniques, including shared norms and expectations, as well
as using technological tools to support collaborative work. In
the computer science industry, development teams collaborate
together, soliciting feedback and providing feedback to others, to
meet common goals.

Problem solving is the foundation of computer science. By nature,
computer science exists to solve problems for people and the
world. Computer scientists create algorithms, which are step-by-
step instructions for a program, to design potential solutions for
end users. The study of computer science core concepts promotes
empathy—it urges students to identify authentic problems and
create solutions to increase accessibility or functionality based on
individual users’ needs. The standards emphasize problem solving
as a necessary practice in the study of computer science. Core
Practice 3, Recognizing and Defining Computational Problems,
requires students to not only identify real-world, interdisciplinary
problems that can be solved computationally, but also break down
these problems and develop potential solutions for the betterment
of society.

Critical thinking is a key component of computer science, as
exhibited in Core Practice 4, Developing and Using Abstractions.
As students engage in Core Practice 4, they build knowledge of
computer science core concepts through the cognitive work of

identifying patterns, creating generalizations, evaluating existing
functionalities, applying learning to new designs, and managing
complexity. These tasks require more than rote memorization. Rather,
they call upon students to analyze, evaluate, and problem solve.

Creativity and innovation drive the computer science field. Computer
scientists explore programs and identify problems they work to solve
through the creation of new computational artifacts. As students
study computer science, they develop new ideas, create prototypes
based on their ideas, share their ideas and prototypes with others,
test their prototypes, reflect on the experience, generate new
ideas for altering their prototypes, test their prototypes again, and
continue in this iterative creative process. Core Practice 5, Creating
Computational Artifacts, emphasizes the need for students to
iteratively create when engaging in computer science learning. Core
Practice 6, Testing and Refining Computational Artifacts, requires
students to focus on creation as a process of continual refinement
based on user needs.

Communication is a necessary skill for computer scientists. Core
Practice 7, Communicating About Computing, emphasizes clear
communication with precise language, incorporating consideration
for audience needs. Computer scientists communicate with
clients, team members, and end users. The study of computer
science teaches students to consider their audience when
communicating. A computer scientist’s various stakeholder groups
may have differing vernaculars, requiring them to learn how to
communicate in varying language registers. According to the
California English Language Arts/English Language Development
(ELA/ELD) Framework, “Register refers to the ways in which

California Department of Education14 | Problem Solving and the Four Cs

grammatical and lexical resources are combined to meet the
expectations of the context (i.e., the content area, topic, audience,
and mode in which the message is conveyed)” (California
Department of Education 2015, Figure 2.14). When developing
a program for end users, communication within an app must
be user-friendly, and developers must learn the most effective
ways of creating an interactive experience in which users provide
feedback to continually improve functionality and accessibility. As
such, in studying computer science concepts, students learn the
importance of listening and responding to user needs. The iterative
process inherent in product development provides students with
a real-world example of the need for formative feedback and a
focus on continual improvement.

California Department of Education What is Computer Science? | 15

What is Computer Science?What is Computer Science?

Computer science involves much more than use of computing
systems. To provide universal access to computer science
instruction for all students, we must thoroughly define computer
science. Computer science is “the study of computers and
algorithmic processes, including their principles, their hardware
and software designs, their applications, and their impact on
society” (Tucker et al. 2006, 2). Computer science is the science
of computing. The term ‘computer science’ is often misconstrued
with other technological and digital terminology.

Computer science is:

§ a theory and practice that allows you to program a
computer to do what you want it to do;

§ a tool that helps you tell a story or make something
happen with technology;

§ a discipline that emphasizes persistence in problem
solving—a skill that is applicable across disciplines,
driving job growth and innovation across all sectors of
the workforce; and

§ a skill that teaches students how to use computers to
create, not just consume.

Computer science is not:

§ learning how to type or use a mouse;

§ learning to use word processing, spreadsheet, or
presentation software;

§ learning how to build or repair computers;

§ playing video games; and

§ learning Smarter Balanced skills.

Adapted from the CS First curriculum (Google n.d.).

Computer science is not limited to computer literacy, educational
technology, digital citizenship, and information technology. It
builds on these topics and goes further in complexity and depth in
the following ways:

§ Computer literacy refers to the general use of computers
and programs, such as productivity software. Previously
mentioned examples include performing an internet search
and creating a digital presentation.

§ Educational technology applies computer literacy to school
subjects. For example, students in an English class can use
a web-based application to collaboratively create, edit, and
store an essay online.

California Department of Education16 | What is Computer Science?

§ Digital citizenship refers to the appropriate and responsible
use of technology, such as choosing an appropriate
password and keeping it secure.

§ Information technology often overlaps with computer
science but is mainly focused on industrial applications of
computer science, such as installing software rather than
creating it. Information technology professionals often have
a background in computer science.

Computer literacy, educational technology, digital citizenship, and
information technology focus on use. Computer science requires
students to not merely use technology as passive consumers.
Computer science also calls for students to understand why and
how computing technologies work, and then build upon that
conceptual knowledge by creating computational artifacts.

The standards include five core concept areas, coupled with seven
core practices that demonstrate ways in which students actively
engage in computer science learning experiences that build
conceptual knowledge.

The computer science core concepts include:

§ Computing Systems (CS)

§ Networks and the Internet (NI)

§ Data and Analysis (DA)

§ Algorithms and Programming (AP)

§ Impacts of Computing (IC)

The computer science core practices include:

1. Fostering an Inclusive Computing Culture

2. Collaborating Around Computing

3. Recognizing and Defining Computational Problems

4. Developing and Using Abstractions

5. Creating Computational Artifacts

6. Testing and Refining Computational Artifacts

7. Communicating About Computing

The five core computer science concepts and seven practices
do not constitute a scope and sequence of appropriate
pacing for a course, nor are they designed to be introduced to
students as independent courses. Guidance regarding specific
interdisciplinary connections are provided in the appendix.
The examples that accompany the standards are not meant to
prescribe requirements as to implementation and assessment
but to illustrate potential models for standards implementation.
These examples and interdisciplinary connections are designed to
provide substantive guidance while also allowing for flexibility and
innovation across local education agencies. The computer science
core concepts and core practices are coherent across grades
K–12. The standards are vertically aligned as a core subject area,
according to the following grade spans: K–2, 3–5, 6–8, and 9–12.
A more detailed look at the computer science core concepts and
core practices follows.

What is Computer Science? | 17

Computer Science Core Concepts
The core concepts in the standards represent key content areas.
The core concepts describe the content knowledge that students
should understand regarding computer science. Each core
concept contains subconcepts, which increase in complexity
according to grade span, as seen in the standards. Core concept
definitions and subconcept descriptions are taken from the K–12
Computer Science Framework.

Core Concept—Computing Systems (CS)

People interact with a wide variety of computing devices that
collect, store, analyze, and act upon information in ways that
can affect human capabilities both positively and negatively.
The physical components (hardware) and instructions (software)
that make up a computing system communicate and process
information in digital form. An understanding of hardware and
software is useful when troubleshooting a computing system that
does not work as intended.

Subconcept: Devices

Many everyday objects contain computational components that
sense and act on the world. In early grades, students learn features
and applications of common computing devices. As they progress,
students learn about connected systems and how the interaction
between humans and devices influences design decisions.

Subconcept: Hardware and Software

Computing systems use hardware and software to communicate
and process information in digital form. In early grades, students

California Department of Education

learn how systems use both hardware and software to represent
and process information. As they progress, students gain a deeper
understanding of the interaction between hardware and software
at multiple levels within computing systems.

Subconcept: Troubleshooting

When computing systems do not work as intended,
troubleshooting strategies help people solve the problem. In early
grades, students learn that identifying the problem is the first step
to fixing it. As they progress, students learn systematic problem-
solving processes and how to develop their own troubleshooting
strategies based on a deeper understanding of how computing
systems work.

Core Concept—Networks and the Internet (NI)

Computing devices typically do not operate in isolation. Networks
connect computing devices to share information and resources
and are an increasingly integral part of computing. Networks
and communication systems provide greater connectivity in the
computing world by providing fast, secure communication and
facilitating innovation.

Subconcept: Network Communication and Organization

Computing devices communicate with each other across
networks to share information. In early grades, students learn
that computers connect them to other people, places, and things
around the world. As they progress, students gain a deeper
understanding of how information is sent and received across
different types of networks.

California Department of Education18 | What is Computer Science?

Subconcept: Cybersecurity

Transmitting information securely across networks requires
appropriate protection. In early grades, students learn how to
protect their personal information. As they progress, students
learn increasingly complex ways to protect information sent across
networks.

Core Concept—Data and Analysis (DA)

Subconcept: Storage

Core functions of computers are storing, representing, and
retrieving data. In early grades, students learn how data is stored
on computers. As they progress, students learn how to evaluate
different storage methods, including the tradeoffs associated with
those methods.

Subconcept: Collection, Visualization, and Transformation

Data is collected with both computational and noncomputational
tools and processes. In early grades, students learn how data
about themselves and their world is collected and used. As
they progress, students learn the effects of collecting data
with computational and automated tools. Data is transformed
throughout the process of collection, digital representation, and
analysis. In early grades, students learn how transformations can
be used to simplify data. As they progress, students learn about
more complex operations to discover patterns and trends and
communicate them to others.

Subconcept: Inference and Models

Data science is one example where computer science serves
many fields. Computer science and science use data to make
inferences, theories, or predictions based upon the data collected
from users or simulations. In early grades, students learn about
the use of data to make simple predictions. As they progress,
students learn how models and simulations can be used to
examine theories and understand systems and how predictions
and inferences are affected by more complex and larger data sets.

Core Concept—Algorithms and Programming (AP)

An algorithm is a sequence of steps designed to accomplish a
specific task. Algorithms are translated into programs, or code,
to provide instructions for computing devices. Algorithms and
programming control all computing systems, empowering people
to communicate with the world in new ways and solve compelling
problems. The development process to create meaningful and
efficient programs involves choosing which information to use
and how to process and store it, breaking apart large problems
into smaller ones, recombining existing solutions, and analyzing
different solutions.

Subconcept: Algorithms

Algorithms are designed to be carried out by both humans and
computers. In early grades, students learn about age-appropriate
algorithms from the real world. As they progress, students learn
about the development, combination, and decomposition of
algorithms, as well as the evaluation of competing algorithms.

What is Computer Science? | 19

Subconcept: Variables

Computer programs store and manipulate data using variables.
In early grades, students learn that different types of data, such
as words, numbers, or pictures, can be used in different ways.
As they progress, students learn about variables and ways to
organize large collections of data into data structures of increasing
complexity.

Subconcept: Control

Control structures specify the order in which instructions are
executed within an algorithm or program. In early grades, students
learn about sequential execution and simple control structures.
As they progress, students expand their understanding to
combinations of structures that support complex execution.

Subconcept: Modularity

Modularity involves breaking down tasks into simpler tasks and
combining simple tasks to create something more complex. In
early grades, students learn that algorithms and programs can be
designed by breaking tasks into smaller parts and recombining
existing solutions. As they progress, students learn about
recognizing patterns to make use of general, reusable solutions
for commonly occurring scenarios and clearly describing tasks in
ways that are widely usable.

Subconcept: Program Development

Programs are developed through a design process that is often
repeated until the programmer is satisfied with the solution.
In early grades, students learn how and why people develop
programs. As they progress, students learn about the tradeoffs in

program design associated with complex decisions involving user
constraints, efficiency, ethics, and testing.

Core Concept—Impacts of Computing (IC)

Computing affects many aspects of the world in both positive and
negative ways at local, national, and global levels. Individuals and
communities influence computing through their behaviors and
cultural and social interactions, and in turn, computing influences
new cultural practices. An informed and responsible person should
understand the social implications of the digital world, including
equity and access to computing.

Subconcept: Culture

Computing influences culture—including belief systems, language,
relationships, technology, and institutions—and culture shapes
how people engage with and access computing. In early grades,
students learn how computing can be helpful and harmful. As
they progress, students learn about tradeoffs associated with
computing and potential future impacts of computing on global
societies.

Subconcept: Social Interactions

Computing can support new ways of connecting people,
communicating information, and expressing ideas. In early
grades, students learn that computing can connect people and
support interpersonal communication. As they progress, students
learn how the social nature of computing affects institutions and
careers in various sectors.

California Department of Education

Subconcept: Safety, Law, and Ethics

Legal and ethical considerations of using computing devices
influence behaviors that can affect the safety and security of
individuals. In early grades, students learn the fundamentals of
digital citizenship and appropriate use of digital media. As they
progress, students learn about the legal and ethical issues that
shape computing practices.

Computer Science Core Practices
The computer science core practices in the standards represent how
students do computer science while building conceptual knowledge
of the key content areas. According to the K–12 Computer Science
Framework, the seven core practices of computer science describe
the behaviors and ways of thinking that computationally literate
students use to fully engage in today’s data-rich and interconnected
world. Each core practice contains practice statements. Core
practice definitions and practice statements are taken from the
K–12 Computer Science Framework. Practice statements describe
what students should be able to do by the end of grade level twelve.

CORE PRACTICE 1
Fostering an Inclusive Computing Culture

Building an inclusive and diverse computing culture requires
strategies for incorporating perspectives from people of different
genders, ethnicities, and abilities. Incorporating these perspectives
involves understanding the personal, ethical, social, economic,
and cultural contexts in which people operate. Considering the
needs of diverse users during the design process is essential to
producing inclusive computational products.

20 | What is Computer Science?

By the end of grade twelve, students should be able to:

1. Include the unique perspectives of others and reflect on
one’s own perspectives when designing and developing
computational products.

	� At all grade levels, students should recognize that the
choices people make when they create artifacts are
based on personal interests, experiences, and needs.
Young learners should begin to differentiate their
technology preferences from the technology preferences
of others. Initially, students should be presented with
perspectives from people with different backgrounds,
ability levels, and points of view. As students progress,
they should independently seek diverse perspectives
throughout the design process for the purpose of
improving their computational artifacts. Students who are
well-versed in fostering an inclusive computing culture
should be able to differentiate backgrounds and skill
sets and know when to call upon others, such as to seek
out knowledge about potential end users or intentionally
seek input from people with diverse backgrounds.

2. Address the needs of diverse end users during the design
process to produce artifacts with broad accessibility and
usability.

	� At any level, students should recognize that users of
technology have different needs and preferences and that
not everyone chooses to use, or is able to use, the same
technology products. For example, young learners, with

California Department of Education What is Computer Science? | 21

teacher guidance, might compare a touchpad and a mouse
to examine differences in usability. As students progress,
they should consider the preferences of people who might
use their products. Students should be able to evaluate the
accessibility of a product to a broad group of end users,
such as people with various disabilities. For example, they
may notice that allowing an end user to change font sizes
and colors will make an interface usable for people with
low vision. At the higher grades, students should become
aware of professionally accepted accessibility standards
and should be able to evaluate computational artifacts
for accessibility. Students should also begin to identify
potential bias during the design process to maximize
accessibility in product design. For example, they can test
an app and recommend to its designers that it respond to
verbal commands to accommodate users who are blind or
have physical disabilities.

3. Employ self- and peer-advocacy to address bias in
interactions, product design, and development methods.

	� After students have experience identifying diverse
perspectives and including unique perspectives (P1.1),
they should begin to employ self-advocacy strategies,
such as speaking for themselves if their needs are not
met. As students progress, they should advocate for
their peers when accommodations, such as an assistive-
technology peripheral device, are needed for someone to
use a computational artifact. Eventually, students should
regularly advocate for both themselves and others.

CORE PRACTICE 2
Collaborating Around Computing

Collaborative computing is the process of performing a
computational task by working in pairs and on teams. Because
it involves asking for the contributions and feedback of others,
effective collaboration can lead to better outcomes than working
independently. Collaboration requires individuals to navigate and
incorporate diverse perspectives, conflicting ideas, disparate skills,
and distinct personalities. Students should use collaborative tools
to effectively work together and to create complex artifacts.

By the end of grade twelve, students should be able to:

1. Cultivate working relationships with individuals possessing
diverse perspectives, skills, and personalities.

	� At any grade level, students should work collaboratively
with others. Early on, they should learn strategies for
working with team members who possess varying
individual strengths. For example, with teacher support,
students should begin to give each team member
opportunities to contribute and to work with each other
as co-learners. Eventually, students should become
more sophisticated at applying strategies for mutual
encouragement and support. They should express
their ideas with logical reasoning and find ways to
reconcile differences cooperatively. For example,
when they disagree, they should ask others to explain
their reasoning and work together to make respectful,
mutual decisions. As they progress, students should

California Department of Education22 | What is Computer Science?

use methods for giving all group members a chance to
participate. Older students should strive to improve team
efficiency and effectiveness by regularly evaluating group
dynamics. They should use multiple strategies to make
team dynamics more productive. For example, they can
ask for the opinions of quieter team members, minimize
interruptions by more talkative members, and give
individuals credit for their ideas and their work.

2. Create team norms, expectations, and equitable workloads
to increase efficiency and effectiveness.

	� After students have had experience cultivating working
relationships within teams (P2.1), they should gain
experience working in particular team roles. Early on,
teachers may help guide this process by providing
collaborative structures. For example, students may
take turns in different roles on the project, such as note
taker, facilitator, or “driver” of the computer. As students
progress, they should become less dependent on the
teacher assigning roles and become more adept at
assigning roles within their teams. For example, they
should decide together how to take turns in different
roles. Eventually, students should independently organize
their own teams and create common goals, expectations,
and equitable workloads. They should also manage
project workflow using agendas and timelines and should
evaluate workflow to identify areas for improvement.

3. Solicit and incorporate feedback from, and provide
constructive feedback to, team members and other
stakeholders.

	� At any level, students should ask questions of others and
listen to their opinions. Early on, with teacher scaffolding,
students should seek help and share ideas to achieve
a particular purpose. As they progress in school,
students should provide and receive feedback related
to computing in constructive ways. For example, pair
programming is a collaborative process that promotes
giving and receiving feedback. Older students should
engage in active listening by using questioning skills
and should respond empathetically to others. As they
progress, students should be able to receive feedback
from multiple peers and should be able to differentiate
opinions. Eventually, students should seek contributors
from various environments. These contributors may
include end users, experts, or general audiences from
online forums.

4. Evaluate and select technological tools that can be used to
collaborate on a project.

	� At any level, students should be able to use tools and
methods for collaboration on a project. For example,
in the early grades, students could collaboratively
brainstorm by writing on a whiteboard. As students
progress, they should use technological collaboration
tools to manage teamwork, such as knowledge-sharing

California Department of Education What is Computer Science? | 23

tools and online project spaces. They should also begin
to make decisions about which tools would be best to
use and when to use them. Eventually, students should
use different collaborative tools and methods to solicit
input from not only team members and classmates but
also others, such as participants in online forums or local
communities.

CORE PRACTICE 3
Recognizing and Defining Computational Problems

The ability to recognize appropriate and worthwhile opportunities
to apply computation is a skill that develops over time and is
central to computing. Solving a problem with a computational
approach requires defining the problem, breaking it down
into parts, and evaluating each part to determine whether a
computational solution is appropriate.

By the end of grade twelve, students should be able to:

1. Identify complex, interdisciplinary, real-world problems that
can be solved computationally.

	� At any level, students should be able to identify problems
that have been solved computationally. For example,
young students can discuss a technology that has
changed the world, such as email or mobile phones. As
they progress, they should ask clarifying questions to
understand whether a problem or part of a problem can
be solved using a computational approach. For example,
before attempting to write an algorithm to sort a large
list of names, students may ask questions about how the

names are entered and what type of sorting is desired.
Older students should identify more complex problems
that involve multiple criteria and constraints. Eventually,
students should be able to identify real-world problems
that span multiple disciplines, such as increasing bike
safety with new helmet technology, and can be solved
computationally.

2. Decompose complex real-world problems into manageable
subproblems that could integrate existing solutions or
procedures.

	� At any grade level, students should be able to break
problems down into their component parts. In the early
grade levels, students should focus on breaking down
simple problems. For example, in a visual programming
environment, students could break down (or decompose)
the steps needed to draw a shape. As students progress,
they should decompose larger problems into manageable
smaller problems. For example, young students may think
of an animation as multiple scenes and thus create each
scene independently. Students can also break down
a program into subgoals: getting input from the user,
processing the data, and displaying the result to the
user. Eventually, as students encounter complex real-
world problems that span multiple disciplines or social
systems, they should decompose complex problems
into manageable subproblems that could potentially be
solved with programs or procedures that already exist.
For example, students could create an app to solve a

California Department of Education24 | What is Computer Science?

community problem that connects to an online database
through an application programming interface (API).

3. Evaluate whether it is appropriate and feasible to solve a
problem computationally.

	� After students have had some experience breaking
problems down (P3.2) and identifying subproblems
that can be solved computationally (P3.1), they should
begin to evaluate whether a computational solution is
the most appropriate solution for a particular problem.
For example, students might question whether using a
computer to determine whether someone is telling the
truth would be advantageous. As students progress,
they should systematically evaluate the feasibility of
using computational tools to solve given problems or
subproblems, such as through a cost-benefit analysis.
Eventually, students should include more factors in their
evaluations, such as how efficiency affects feasibility or
whether a proposed approach raises ethical concerns.

CORE PRACTICE 4
Developing and Using Abstractions

Abstractions are formed by identifying patterns and extracting
common features from specific examples to create generalizations.
Using generalized solutions and parts of solutions designed for
broad reuse simplifies the development process by managing
complexity.

By the end of grade twelve, students should be able to:

1. Extract common features from a set of interrelated
processes or complex phenomena.

	� Students at all grade levels should be able to recognize
patterns. Young learners should be able to identify and
describe repeated sequences in data or code through
analogy to visual patterns or physical sequences of
objects. As they progress, students should identify
patterns as opportunities for abstraction, such as
recognizing repeated patterns of code that could be
more efficiently implemented as a loop. Eventually,
students should extract common features from more
complex phenomena or processes. For example, students
should be able to identify common features in multiple
segments of code and substitute a single segment
that uses variables to account for the differences.
In a procedure, the variables would take the form of
parameters. When working with data, students should
be able to identify important aspects and find patterns
in related data sets such as crop output, fertilization
methods, and climate conditions.

2. Evaluate existing technological functionalities and
incorporate them into new designs.

	� At all levels, students should be able to use well-defined
abstractions that hide complexity. Just as a car hides
operating details, such as the mechanics of the engine,
a computer program’s “move” command relies on hidden
details that cause an object to change location on the

California Department of Education What is Computer Science? | 25

screen. As they progress, students should incorporate
predefined functions into their designs, understanding
that they do not need to know the underlying
implementation details of the abstractions that they use.
Eventually, students should understand the advantages
of, and be comfortable using, existing functionalities
(abstractions) including technological resources created
by other people, such as libraries and application
programming interfaces (APIs). Students should be able
to evaluate existing abstractions to determine which
should be incorporated into designs and how they should
be incorporated. For example, students could build
powerful apps by incorporating existing services, such as
online databases that return geolocation coordinates of
street names or food nutrition information.

3. Create modules and develop points of interaction that can
apply to multiple situations and reduce complexity.

	� After students have had some experience identifying
patterns (P4.1), decomposing problems (P3.2), using
abstractions (P4.2), and taking advantage of existing
resources (P4.2), they should begin to develop their
own abstractions. As they progress, students should take
advantage of opportunities to develop generalizable
modules. For example, students could write more
efficient programs by designing procedures that are
used multiple times in the program. These procedures
can be generalized by defining parameters that create
different outputs for a wide range of inputs. Later on,

students should be able to design systems of interacting
modules, each with a well-defined role, that coordinate
to accomplish a common goal. Within an object-
oriented programming context, module design may
include defining the interactions among objects. At this
stage, these modules, which combine both data and
procedures, can be designed and documented for reuse
in other programs. Additionally, students can design
points of interaction, such as a simple user interface,
either text or graphical, that reduces the complexity of a
solution and hides lower-level implementation details.

4. Model phenomena and processes and simulate systems to
understand and evaluate potential outcomes.

	� Students at all grade levels should be able to represent
patterns, processes, or phenomena. With guidance,
young students can draw pictures to describe a simple
pattern, such as sunrise and sunset, or show the stages
in a process, such as brushing your teeth. They can also
create an animation to model a phenomenon, such as
evaporation. As they progress, students should understand
that computers can model real-world phenomena, and
they should use existing computer simulations to learn
about real-world systems. For example, they may use a
preprogrammed model to explore how parameters affect
a system, such as how rapidly a disease spreads. Older
students should model phenomena as systems, with rules
governing the interactions within the system. Students
should analyze and evaluate these models against real-

California Department of Education26 | What is Computer Science?

world observations. For example, students might create
a simple producer–consumer ecosystem model using
a programming tool. Eventually, they could progress to
creating more complex and realistic interactions between
species, such as predation, competition, or symbiosis, and
evaluate the model based on data gathered from nature.

CORE PRACTICE 5
Creating Computational Artifacts

The process of developing computational artifacts embraces
both creative expression and the exploration of ideas to create
prototypes and solve computational problems. Students create
artifacts that are personally relevant or beneficial to their
community and beyond. Computational artifacts can be created
by combining and modifying existing artifacts or by developing
new artifacts. Examples of computational artifacts include
programs, simulations, visualizations, digital animations, robotic
systems, and apps.

By the end of grade twelve, students should be able to:

1. Plan the development of a computational artifact using
an iterative process that includes reflection on and
modification of the plan, taking into account key features,
time and resource constraints, and user expectations.

	� At any grade level, students should participate in
project planning and the creation of brainstorming
documents. The youngest students may do so with the
help of teachers. With scaffolding, students should
gain greater independence and sophistication in the

planning, design, and evaluation of artifacts. As learning
progresses, students should systematically plan the
development of a program or artifact and intentionally
apply computational techniques, such as decomposition
and abstraction, along with knowledge about existing
approaches to artifact design. Students should be
capable of reflecting on and, if necessary, modifying the
plan to accommodate end goals.

2. Create a computational artifact for practical intent, personal
expression, or to address a societal issue.

	� Students at all grade levels should develop artifacts in
response to a task or a computational problem. At the
earliest grade levels, students should be able to choose
from a set of given commands to create simple animated
stories or solve pre-existing problems. Younger students
should focus on artifacts of personal importance. As
they progress, student expressions should become
more complex and of increasingly broader significance.
Eventually, students should engage in independent,
systematic use of design processes to create artifacts
that solve problems with social significance by seeking
input from broad audiences.

3. Modify an existing artifact to improve or customize it.

	� At all grade levels, students should be able to examine
existing artifacts to understand what they do. As they
progress, students should attempt to use existing
solutions to accomplish a desired goal. For example,

California Department of Education What is Computer Science? | 27

students could attach a programmable light sensor to
a physical artifact they have created to make it respond
to light. Later on, they should modify or remix parts of
existing programs to develop something new or to add
more advanced features and complexity. For example,
students could modify prewritten code from a single-
player game to create a two-player game with slightly
different rules.

CORE PRACTICE 6
Testing and Refining Computational Artifacts

Testing and refinement is the deliberate and iterative process
of improving a computational artifact. This process includes
debugging (identifying and fixing errors) and comparing actual
outcomes to intended outcomes. Students also respond to the
changing needs and expectations of end users and improve the
performance, reliability, usability, and accessibility of artifacts.

By the end of grade twelve, students should be able to:

1. Systematically test computational artifacts by considering
all scenarios and using test cases.

	� At any grade level, students should be able to compare
results to intended outcomes. Young students should
verify whether given criteria and constraints have
been met. As students progress, they should test
computational artifacts by considering potential errors,
such as what will happen if a user enters invalid input.
Eventually, testing should become a deliberate process
that is more iterative, systematic, and proactive. Older

students should be able to anticipate errors and use that
knowledge to drive development. For example, students
can test their program with inputs associated with all
potential scenarios.

2. Identify and fix errors using a systematic process.

	� At any grade level, students should be able to identify
and fix errors in programs (debugging) and use
strategies to solve problems with computing systems
(troubleshooting). Young students could use trial and
error to fix simple errors. For example, a student may try
reordering the sequence of commands in a program. In
a hardware context, students could try to fix a device
by resetting it or checking whether it is connected to a
network. As students progress, they should become more
adept at debugging programs and begin to consider
logic errors: cases in which a program works, but not as
desired. In this way, students will examine and correct
their own thinking. For example, they might step through
their program, line by line, to identify a loop that does not
terminate as expected. Eventually, older students should
progress to using more complex strategies for identifying
and fixing errors, such as printing the value of a counter
variable while a loop is running to determine how many
times the loop runs.

3. Evaluate and refine a computational artifact multiple
times to enhance its performance, reliability, usability, and
accessibility.

California Department of Education28 | What is Computer Science?

	� After students have gained experience testing (P6.2),
debugging, and revising (P6.1), they should begin
to evaluate and refine their computational artifacts.
As students progress, the process of evaluation and
refinement should focus on improving performance and
reliability. For example, students could observe a robot
in a variety of lighting conditions to determine that a
light sensor should be less sensitive. Later on, evaluation
and refinement should become an iterative process that
also encompasses making artifacts more usable and
accessible (P1.2). For example, students can incorporate
feedback from a variety of end users to help guide the
size and placement of menus and buttons in a user
interface.

CORE PRACTICE 7
Communicating About Computing

Communication involves personal expression and exchanging
ideas with others. In computer science, students communicate
with diverse audiences about the use and effects of computation
and the appropriateness of computational choices. Students
write clear comments, document their work, and communicate
their ideas through multiple forms of media. Clear communication
includes using precise language and carefully considering possible
audiences.

By the end of grade twelve, students should be able to:

1. Select, organize, and interpret large data sets from multiple
sources to support a claim.

	� At any grade level, students should be able to refer to
data when communicating an idea. Early on, students
should, with guidance, present basic data through the
use of visual representations, such as storyboards,
flowcharts, and graphs. As students progress, they should
work with larger data sets and organize the data in those
larger sets to make interpreting and communicating it to
others easier, such as through the creation of basic data
representations. Eventually, students should be able to
select relevant data from large or complex data sets in
support of a claim or to communicate the information in
a more sophisticated manner.

2. Describe, justify, and document computational processes
and solutions using appropriate terminology consistent with
the intended audience and purpose.

	� At any grade level, students should be able to talk about
choices they make while designing a computational
artifact. Early on, they should use language that
articulates what they are doing and identifies devices
and concepts they are using with correct terminology
(e.g., program, input, and debug). Younger students
should identify the goals and expected outcomes of
their solutions. Along the way, students should provide
documentation for end users that explains their artifacts
and how they function, and they should both give
and receive feedback. For example, students could
provide a project overview and ask for input from users.
As students progress, they should incorporate clear

California Department of Education What is Computer Science? | 29

comments in their product and document their process
using text, graphics, presentations, and demonstrations.

3. Articulate ideas responsibly by observing intellectual
property rights and giving appropriate attribution.

	� All students should be able to explain the concepts of
ownership and sharing. Early on, students should apply
these concepts to computational ideas and creations.
They should identify instances of remixing, when ideas
are borrowed and iterated upon, and give proper
attribution. They should also recognize the contributions
of collaborators. Eventually, students should consider
common licenses that place limitations or restrictions
on the use of computational artifacts. For example, a
downloaded image may have restrictions that prohibit
modification of an image or using it for commercial
purposes.

The K–12 Computer Science Framework, led by the
Association for Computing Machinery, Code.org, Computer
Science Teachers Association, Cyber Innovation Center, and
National Math and Science Initiative in partnership with states
and districts, informed the development of this work.

30 | California K–12 Computer Science Standards California Department of Education

California K–12
Computer Science Standards
California K–12
Computer Science Standards

K–2
K-2.CS.1

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.CS.1 Select and operate computing
devices that perform a variety of tasks
accurately and quickly based on user
needs and preferences.

Computing
Systems

Devices Inclusion 1.1

Descriptive Statement

People use computing devices to perform a variety of tasks accurately and quickly. Computing devices interpret and follow the given
instructions literally. Students select and operate an appropriate computing device and corresponding program or app for a given task.

For example, students could use computing devices to describe what plants and animals (including humans) need to survive. In this case,
students could choose to use a keyboard to type explanatory sentences onto graphics. They could also choose to use a touchscreen device
with a stylus to annotate an image for a slideshow, or choose to use a camera enabled device to make a video. Student choices may reflect
their own needs or the needs of others (CA NGSS: K-LS1-1; 2-LS4-1).

Alternatively, students could choose to use a computing device with audio recording capabilities to recount stories or poems. Students could
clarify thoughts, ideas, or feelings via their preference of either using a device with digital drawing tools, or by creating paper and pencil
drawing based on their needs and preferences (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5).

California Department of Education California K–12 Computer Science Standards | 31

K-2.CS.2

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.CS.2 Explain the functions of common
hardware and software components
of computing systems.

Computing
Systems

Hardware &
Software

Communicating 7.2

Descriptive Statement

A computing system is composed of hardware and software. Hardware includes the physical components of a computer system. Software
provides instructions for the system. These instructions are represented in a form that a computer can understand and are designed for
specific purposes. Students identify and describe the function of hardware, such as desktop computers, laptop computers, tablet devices,
monitors, keyboards, mice, trackpads, microphones, and printers. Students also identify and describe common software applications such as
web browsers, games, and word processors.

For example, students could create drawings of a computing system and label its major components with appropriate terminology. Students
could then explain the function of each component (VAPA Visual Arts 2 5.0) (CA CCSS for ELA/Literacy SL.K.5, SL.K.6, SL.1.5, SL.1.6, SL.2.5,
SL.2.6).

Alternatively, students could each be assigned a component of a computing system and arrange their bodies to represent the system.
Students could then describe how their assigned component functions within the system (P.E.K.1, 1.1).

32 | California K–12 Computer Science Standards California Department of Education

K-2.CS.3

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.CS.3 Describe basic hardware and software
problems using accurate terminology.

Computing
Systems

Troubleshooting Testing,
Communicating

6.2, 7.2

Descriptive Statement

Problems with computing systems have different causes. Accurate description of the problem aids users in finding solutions. Students
communicate a problem with accurate terminology (e.g., when an app or program is not working as expected, a device will not turn on, the
sound does not work, etc.). Students at this level do not need to understand the causes of hardware and software problems.

For example, students could sort hardware and software terms on a word wall, and refer to the word wall when describing problems using “I
see...” statements (e.g., “I see the pointer on the screen is missing”, “I see that the computer will not turn on”). (CA CCSS for ELA/Literacy
L.K.5.A, L.1.5.A, SL K.5, SL1.5, SL 2.5) (Visual Arts Kinder 5.2)

Alternatively, students could use appropriate terminology during collaborative conversations as they learn to debug, troubleshoot, collaborate,
and think critically with technology. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL.2.1)

California Department of Education California K–12 Computer Science Standards | 33

K-2.NI.4

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.NI.4 Model and describe how people
connect to other people, places,
information and ideas through a
network.

Networks & the
Internet

Network
Communication
& Organization

Abstraction 4.4

Descriptive Statement

Information is passed between multiple points (nodes) on a network. The internet is a network that enables people to connect with other
people worldwide through many different points of connection. Students model ways that people communicate, find information, or acquire
ideas through a network. Students use a network, such as the internet, to access information from multiple locations or devices.

For example, students could utilize a cloud-based platform to access shared documents or note-taking applications for group research
projects, and then create a model (e.g., flowchart) to illustrate how this network aids collaboration (CA CCSS for ELA/Literacy W.K.7, W.1.7,
W.2.7).

Alternatively, students could design devices that use light or sound to aid communication across distances (e.g., light source to send signals,
paper cup and string “telephones,” and a pattern of drum beats) and then describe how networks build connections (CA NGSS: 1-PS4-4).

34 | California K–12 Computer Science Standards California Department of Education

K-2.NI.5

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.NI.5 Explain why people use passwords. Networks & the
Internet

Cybersecurity Communicating 7.2

Descriptive Statement

Passwords protect information from unwanted use by others. When creating passwords, people often use patterns of familiar numbers and text
to more easily remember their passwords. However, this may make the passwords weaker. Knowledge about the importance of passwords is an
essential first step in learning about cybersecurity. Students explain that strong passwords are needed to protect devices and information from
unwanted use.

For example, students could play a game of guessing a three-character code. In one version of the game, the characters are only numbers.
In the second version, characters are numbers or letters. Students describe why it would take longer to guess the correct code in the second
case.

Alternatively, students could engage in a collaborative discussion regarding passwords and their importance. Students may follow-up the
discussion by exploring strong password components (combination of letters, numbers, and characters), creating their own passwords, and
writing opinion pieces indicating reasons their passwords are strong (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL 2.1, W.1.1, W.2.1).

California Department of Education California K–12 Computer Science Standards | 35

K-2.NI.6

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.NI.6 Create patterns to communicate a
message.

Networks & the
Internet

Cybersecurity Abstraction 4.4

Descriptive Statement

Connecting devices to a network or the internet provides great benefit, but care must be taken to protect devices and information from
unauthorized access. Messages can be protected by using secret languages or codes. Patterns help to ensure that the intended recipient can
decode the message. Students create a pattern that can be decoded and translated into a message.

For example, students could use a table to associate each text character with a number. Then, they could select a combination of text
characters and use mathematical functions (e.g., simple arithmetic operations) to transform the numbers associated with the characters into
a secret message. Using inverse functions, a peer could translate the secret message back into its original form (CA CCSS for Mathematics
2.OA.A.1, 2.OA.B.2).

Alternatively, students could use icons or invented symbols to represent patterns of beat, rhythm, or pitch to decode a musical phrase (VAPA
Music K.1.1, 1.1.1, 2.1.1, 2.2.2).

36 | California K–12 Computer Science Standards California Department of Education

K-2.DA.7

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.DA.7 Store, copy, search, retrieve, modify,
and delete information using a
computing device, and define the
information stored as data.

Data & Analysis Storage Abstraction 4.2

Descriptive Statement

Information from the real world can be stored and processed by a computing device. When stored on a computing device, it is referred to as
data. Data can include images, text documents, audio files, and video files. Students store, copy, search, retrieve, modify, and delete
information using a computing device and define the information stored as data.

For example, students could produce a story using a computing device, storing it locally or remotely (e.g., in the cloud). They could then make a
copy of the story for peer revision and editing. When the final copy of the story is complete, students delete any unnecessary files. They search
for and retrieve data from a local or remote source, depending on where it was stored (CA CCSS for ELA/Literacy W.K.6, W.K.5, W1.6, W.1.5,
W.2.6, W.2.5).

Alternatively, students could record their voices singing an age-appropriate song. They could store the data on a computing device, search for
peers’ audio files, retrieve their own files, and delete unnecessary takes (VAPA Music K.2.2, 1.2.2, 2.2.2).

California Department of Education California K–12 Computer Science Standards | 37

K-2.DA.8

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.DA.8 Collect and present data in various
visual formats.

Data & Analysis Collection
Visualization &
Transformation

Communicating,
Abstraction

7.1, 4.4

Descriptive Statement

Data can be collected and presented in various visual formats.

For example, students could measure temperature changes throughout a day. They could then discuss ways to display the data visually.
Students could extend the activity by writing different narratives based on collected data, such as a story that begins in the morning when
temperatures are low and one that begins in the afternoon when the sun is high and temperatures are higher (CA CCSS for ELA/Literacy
RL.K.9, RL.1.9, RL.2.9, W.K.3, W.1.3, W.2.3).

Alternatively, students collect peers’ favorite flavor of ice cream and brainstorm differing ways to display the data. In groups, students can
choose to display and present the data in a format of their choice (CA CCSS for Mathematics K.MD.3, 1.MD.4, 2.MD.10).

38 | California K–12 Computer Science Standards California Department of Education

K-2.DA.9

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.DA.9 Identify and describe patterns in
data visualizations, such as charts or
graphs, to make predictions.

Data & Analysis Inference &
Models

Abstraction 4.1

Descriptive Statement

Data can be used to make inferences or predictions about the world.

For example, students could record the number of each color of candy in a small packet. Then, they compare their individual data with
classmates. Students could use the collected data to predict how many of each colored candy will be in a full size bag of like candy (CA CCSS
for Mathematics K.MD.3, 1.MD.4, 2.MD.10).

Alternatively, students could sort and classify objects according to their properties and note observations. Students could then create a graph
or chart of their observations and look for connections/relationships (e.g., items that are hard are usually also smooth, or items that are fluffy
are usually also light in weight.) Students then look at pictures of additional objects and make predictions regarding the properties of the
objects pictured (CA NGSS: 2-PS1-1, 2-PS1-2).

California Department of Education California K–12 Computer Science Standards | 39

K-2.AP.10

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.AP.10 Model daily processes by creating
and following algorithms to complete
tasks.

Algorithms &
Programming

Algorithms Computational
Problems,
Abstraction

4.4, 3.2

Descriptive Statement

Algorithms are sequences of instructions that describe how to complete a specific task. Students create algorithms that reflect simple life
tasks inside and outside of the classroom.

For example, students could create algorithms to represent daily routines for getting ready for school, transitioning through center rotations,
eating lunch, and putting away art materials. Students could then write a narrative sequence of events (CA CCSS for ELA/Literacy W.K.3,
W.1.3, W.2.3).

Alternatively, students could create a game or a dance with a specific set of movements to reach an intentional goal or objective (P.E K.2, 1.2,
2.2).

Additionally, students could create a map of their neighborhood and give step-by-step directions of how they get to school (HSS.K.4, 1.2, 2.2).

40 | California K–12 Computer Science Standards California Department of Education

K-2.AP.11

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.AP.11 Model the way programs store data. Algorithms &
Programming

Variables Abstraction 4.4

Descriptive Statement

Information in the real world can be represented in computer programs. Students model the digital storage of data by transforming real-world
information into symbolic representations that include text, numbers, and images.

For example, after identifying symbols on a map and explaining what they represent in the real world, students could create their own symbols
and corresponding legend to represent items on a map of their classroom (HSS.K.4.3, 1.2.3, 2.2.2).

Alternatively, students could invent symbols to represent beat and/or pitch. Students could then modify symbols within the notation and
explain how the musical phrase changes (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2).

California Department of Education California K–12 Computer Science Standards | 41

K-2.AP.12

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.AP.12 Create programs with sequences
of commands and simple loops, to
express ideas or address a problem.

Algorithms &
Programming

Control,
Modularity

Creating 5.2

Descriptive Statement

People create programs by composing sequences of commands that specify the precise order in which instructions should be executed. Loops
enable programs to repeat a sequence of commands multiple times.

For example, students could follow simple movements in response to oral instructions. Students could then create a simple sequence of
movement commands in response to a given problem (e.g., In how many ways can you travel from point A to point B?) and represent it as a
computer program, using loops to repeat commands (VAPA Dance K.1.4, 1.2.3, 1.2.5, 1.2.8, 2.2.1, 2.2.2, 2.2.3).

Alternatively, on a mat with many different CVC words, students could program robots to move to words with a similar vowel sound. Students
could look for multiple ways to solve the problem and simplify their solution by incorporating loops (CA CCSS for ELA/Literacy RF.K.2.D,
RF.1.2.C).

42 | California K–12 Computer Science Standards California Department of Education

K-2.AP.13

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.AP.13 Decompose the steps needed to
solve a problem into a sequence of
instructions.

Algorithms &
Programming

Modularity Computational
Problems

3.2

Descriptive Statement

Decomposition is the act of breaking down tasks into simpler tasks.

For example, students could break down the steps needed to make a peanut butter and jelly sandwich, to brush their teeth, to draw a shape,
to move a character across the screen, or to solve a level of a coding app. In a visual programming environment, students could break down
the steps needed to draw a shape (CA CCSS for Mathematics K.G.5, 1.G.1, 2.G.1).

Alternatively, students could decompose the planning of a birthday party into tasks such as: (1) Decide when and where it should be, (2) List
friends and family to invite, (3) Send the invitations, (4) Bake a cake, (5) Decorate, etc.

California Department of Education California K–12 Computer Science Standards | 43

K-2.AP.14

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.AP.14 Develop plans that describe a
program’s sequence of events, goals,
and expected outcomes.

Algorithms &
Programming

Program
Development

Creating,
Communicating

5.1, 7.2

Descriptive Statement

Creating a plan for what a program will do clarifies the steps that will be needed to create the program and can be used to check if a program
runs as expected. Students create a planning document to illustrate their program’s sequence of events, goals, and expected outcomes of
what their program will do. Planning documents could include a story map, a storyboard, or a sequential graphic organizer, to illustrate their
program’s sequence of events, goals, and expected outcomes of what their program will do. Students at this level may complete the planning
process with help from the teacher.

For example, students could create a storyboard or timeline that represents a family’s history, leading to their current location of residence.
Students could then create a plan for a program that animates the story of family locations (HSS 2.1.1) (CA CCSS for ELA/Literacy W.K.3,
W.1.3, W.2.3).

44 | California K–12 Computer Science Standards California Department of Education

K-2.AP.15

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.AP.15 Give attribution when using the
ideas and creations of others while
developing programs.

Algorithms &
Programming

Program
Development

Communicating 7.3

Descriptive Statement

Computing makes it easy to reuse and remix others’ creations, and this comes with a level of responsibility. Students credit artifacts that were
created by others, such as pictures, music, and code. Credit could be given orally if presenting their work to the class, or in writing if sharing
work on a class blog or website. Proper attribution at this stage does not require formal citation, such as in a bibliography or works cited
document.

For example, when creating an animation of the sun, moon, and stars using a blocks-based language, students could draw their own sun and
use an image of the moon and stars from a website or a teammate. When students present the model to the class, they can orally give credit
to the website or peer for the contributions (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5) (NGSS.1-ESS1-1) (CA Model School Library
Standards 2.3.b, 2.4.2.a).

California Department of Education California K–12 Computer Science Standards | 45

K-2.AP.16

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.AP.16 Debug errors in an algorithm or
program that includes sequences and
simple loops.

Algorithms &
Programming

Program
Development

Testing 6.2

Descriptive Statement

Algorithms or programs may not always work correctly. Students use various strategies, such as changing the sequence of the steps, following
the algorithm in a step-by-step manner, or trial and error to fix problems in algorithms and programs.

For example, when given images placed in a random order, students could give step-by-step commands to direct a robot, or a student playing
a robot, to navigate to the images in the correct sequence. Examples of images include storyboard cards from a familiar story (CA CCSS for
ELA/Literacy RL.K.2, RL.1.2, RL.2.2) and locations of the sun at different times of the day (CA NGSS: 1-ESS1-1).

Alternatively, students could “program” the teacher or another classmate by giving precise instructions to make a peanut butter and jelly
sandwich or navigate around the classroom. When the teacher or classmate doesn’t respond as intended, students correct their commands.
Additionally, students could receive a partially completed soundboard program that has a variety of animals programmed to play a
corresponding sound when the user touches them. Students correct any sounds that don’t match the animal (e.g., if the cat moos, students
change the moo sound to meow).

46 | California K–12 Computer Science Standards California Department of Education

K-2.AP.17

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.AP.17 Describe the steps taken and choices
made during the iterative process of
program development.

Algorithms &
Programming

Program
Development

Communicating 7.2

Descriptive Statement

Program developers make choices and iterate to continually refine their product. At this stage, students explain or write about the goals and
expected outcomes of the programs they create and the choices that they made when creating programs. Students could use coding journals,
discussions with a teacher, class presentations, or blogs.

For example, students could use a combination of images, verbal reflections, a physical model, and/or written text to show the step-by-step
process taken to develop a program such as cutting and pasting coding commands into a journal, using manipulatives that represent different
commands and control structures, and taking screenshots of code and adding to a digital journal. This iterative process could be documented
via a speech, journal, one on one conference with teacher or peer, small group conference, or blog (CA CCSS for ELA/Literacy SL.K.5, SL.1.5,
SL.2.5) (CA NGSS: K-2-ETS1.2).

California Department of Education California K–12 Computer Science Standards | 47

K-2.IC.18

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.IC.18 Compare how people lived and
worked before and after the adoption
of new computing technologies.

Impacts of
Computing

Culture Computational
Problems

3.1

Descriptive Statement

Computing technologies have changed the way people live and work. Students describe the positive and negative impacts of these changes.

For example, as a class, students could create a timeline that includes advancements in computing technologies. Each student could
then choose an advancement from the timeline and make a graphic organizer noting how people’s lives were different before and after its
introduction into society. Student responses could include: In the past, if students wanted to read about a topic, they needed access to a
library to find a book about it. Today, students can view and read information on the internet about a topic or they can download e-books
about it directly to a device. Such information may be available in more than one language and could be read to a student, allowing for great
accessibility (HSS.K.6.3).

Alternatively, students could retell or dramatize stories, myths, and fairy tales from two distinct time periods before and after a particular
computing technology had been introduced. For example, the setting of one story could take place before smartphones had been invented,
while a second setting could take place with smartphones in use by characters in the story. Students could note the positive and negative
aspects of smartphones on the daily lives of the characters in the story (VAPA Theatre Arts K.3.1, K.3.2, 1.2.2, 2.3.2) (CA CCSS for ELA/
Literacy RL.K.2, RL.K.9, RL.1., RL.1.9, RL.2.2, RL.2.9).

48 | California K–12 Computer Science Standards California Department of Education

K-2.IC.19

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.IC.19 Work respectfully and responsibly
with others when communicating
electronically.

Impacts of
Computing

Social
Interactions

Collaborating 2.1

Descriptive Statement

Electronic communication facilitates positive interactions, such as sharing ideas with many people, but the public and anonymous nature
of electronic communication also allows intimidating and inappropriate behavior in the form of cyberbullying. Responsible electronic
communication includes limiting access to personably identifiable information. Students learn and use appropriate behavior when
communicating electronically (often called “netiquette”).

For example, students could share their work on a classroom blog or in other collaborative spaces online, taking care to avoid sharing
information that is inappropriate or that could personally identify themselves to others (CA CCSS for ELA/Literacy W.K.6, W.1.6, W.21.6).

Alternatively, students could provide feedback to others on their work in a kind and respectful manner. They could learn how written words can
be easily misinterpreted and may seem negative when the intention may be to express confusion, give ideas, or prompt further discussion.
They could also learn to identify harmful behavior on collaborative spaces and intervening to find the proper authority to help (CA CCSS for
ELA/Literacy W.K.5, W.1.5, W.2.5) (HSS 1.1.2).

California Department of Education California K–12 Computer Science Standards | 49

K-2.IC.20

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

K–2 K-2.IC.20 Describe approaches and rationales
for keeping login information private,
and for logging off of devices
appropriately.

Impacts of
Computing

Safety Law &
Ethics

Computational
Problems

3.1

Descriptive Statement

People use computing technology in ways that can help or hurt themselves and/or others. Harmful behaviors, such as sharing passwords or
other private information and leaving public devices logged in should be recognized and avoided. Students keep login information private, log
off of devices appropriately, and discuss the importance of these practices.

For example, while learning about individual responsibility and citizenship, students could create a “privacy folder” to store login information,
and keep this folder in a secure location that is not easily seen and accessed by classmates. Students could discuss the relative benefits and
impacts of choosing to store passwords in a folder online versus on paper. They could also describe how using the same login and password
across many systems and apps could lead to significant security issues and requires even more vigilance in maintaining security (HSS K.1).

Alternatively, students can write an informational piece regarding the importance of keeping login information private and logging off of public
devices (CA CCSS for ELA/Literacy W.K.2, W.1.2, W.2.2).

50 | California K–12 Computer Science Standards California Department of Education

3–5
3-5.CS.1

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.CS.1 Describe how computing devices
connect to other components to form
a system.

Computing
Systems

Devices Communicating 7.2

Descriptive Statement

Computing devices often depend on other devices or components. Students describe physical and wireless connections to other components,
including both input devices (e.g., keyboards, sensors, remote controls, microphones) and output devices (e.g., 3D printers, monitors,
speakers).

For example, students could describe the relationship among the heart, lungs, muscles, blood, and oxygen during physical activity and then
compare this to how a mouse, keyboard, printer, and desktop computer connect and interact to allow for input, processing, and output
(P.E.3.4.7).

Alternatively, when describing how light reflected from objects enters the eye and is then transferred to the brain to construct a visual image,
students could compare this to a computing system that uses programming to construct a visual image when data is transferred and
constructed/reconstructed through a keyboard, camera, or other components (CA NGSS: 4-PS4-2).

California Department of Education California K–12 Computer Science Standards | 51

3-5.CS.2

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.CS.2 Demonstrate how computer hardware
and software work together as a
system to accomplish tasks.

Computing
Systems

Hardware &
Software

Abstraction 4.4

Descriptive Statement

Hardware and software are both needed to accomplish tasks with a computing device. Students create a model to illustrate ways in
which hardware and software work as a system. Students could draw a model on paper or in a drawing program, program an animation to
demonstrate it, or demonstrate it by acting this out in some way. At this level, a model should only include the basic elements of a computer
system, such as input, output, processor, sensors, and storage.

For example, students could create a diagram or flow chart to indicate how a keyboard, desktop computer, monitor, and word processing
software interact with each other. The keyboard (hardware) detects a key press, which the operating system and word processing application
(software) displays as a new character that has been inserted into the document and is visible through the monitor (hardware). Students
could also create a model by acting out the interactions of these different hardware and software components.

Alternatively, when describing that animals and people receive different types of information through their senses, process the information in
their brain, and respond to the information in different ways, students could compare this to the interaction of how the information traveling
through a computer from mouse to processor are similar to signals sent through the nervous system telling our brain about the world around
us to prompt responses (CA NGSS: 4-LS1-2).

52 | California K–12 Computer Science Standards California Department of Education

3-5.CS.3

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.CS.3 Determine potential solutions
to solve simple hardware and
software problems using common
troubleshooting strategies.

Computing
Systems

Troubleshooting Testing 6.2

Descriptive Statement

Although computing systems vary, common troubleshooting strategies can be used across many different systems. Students use
troubleshooting strategies to identify problems that could include a device not responding, lacking power, lacking a network connection, an
app crashing, not playing sounds, or password entry not working. Students use and develop various solutions to address these problems.
Solutions may include rebooting the device, checking for power, checking network availability, opening and closing an app, making sure
speakers are turned on or headphones are plugged in, and making sure that the caps lock key is not on.

For example, students could prepare for and participate in a collaborative discussion in which they identify and list computing system
problems and then describe common successful fixes (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1).

Alternatively, students could write informative/explanatory texts, create a poster, or use another medium of communication to examine
common troubleshooting strategies and convey these ideas and information clearly (CA CCSS for ELA/Literacy W.3.2, W.4.2, W.5.2).

California Department of Education California K–12 Computer Science Standards | 53

3-5.NI.4

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.NI.4 Model how information is broken
down into smaller pieces, transmitted
as packets through multiple devices
over networks and the internet, and
reassembled at the destination.

Networks & the
Internet

Network
Communication
& Organization

Abstraction 4.4

Descriptive Statement

Information is sent and received over physical or wireless paths. It is broken down into smaller pieces called packets, which are sent
independently and reassembled at the destination. Students demonstrate their understanding of this flow of information by, for instance,
drawing a model of the way packets are transmitted, programming an animation to show how packets are transmitted, or demonstrating this
through an unplugged activity in which they physically act this out.

For example, students could design a structure using building blocks or other materials with the intention of re-engineering it in another
location, just as early Americans did after the intercontinental railroad was constructed in the 1850s (HSS.4.4.1, 4.4.2). Students could
deconstruct the designed structure, place materials into specific containers (or plastic bags/brown paper bags/etc.), and develop instructions
on how to recreate the structure once each container arrives at its intended destination (CA NGSS: 3-5-ETS1).

For example, students could cut up a map of the United States by state lines. Students could then place the states in envelopes and
transmit the “packets” through a physical network, represented by multiple students spreading out in arms reach of at least two others. At the
destination, the student who receives the packets reassembles the individual states back into a map of the United States (HSS 5.9).

Alternatively, students could perform a similar activity with a diatonic scale, cutting the scale into individual notes. Each note, in order, should
be placed into a numbered envelope based on its location on the scale. These envelopes can be transmitted across the network of students
and reassembled at the destination (VAPA Music 4.1.2).

54 | California K–12 Computer Science Standards California Department of Education

3-5.NI.5

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.NI.5 Describe physical and digital security
measures for protecting personal
information.

Networks & the
Internet

Cybersecurity Computational
Problems

3.1

Descriptive Statement

Personal information can be protected physically and digitally. Cybersecurity is the protection from unauthorized use of electronic data, or the
measures taken to achieve this. Students identify what personal information is and the reasons for protecting it. Students describe physical
and digital approaches for protecting personal information such as using strong passwords and biometric scanners.

For example, students could engage in a collaborative discussion orally or in writing regarding topics that relate to personal cybersecurity
issues. Discussion topics could be based on current events related to cybersecurity or topics that are applicable to students, such as the
necessity of backing up data to guard against loss, how to create strong passwords and the importance of not sharing passwords, or why
we should keep operating systems updated and use anti-virus software to protect data and systems. Students could also discuss physical
measures that can be used to protect data including biometric scanners, locked doors, and physical backups (CA CCSS for ELA/Literacy
SL.3.1, SL.4.1, SL.5.1).

California Department of Education California K–12 Computer Science Standards | 55

3-5.NI.6

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.NI.6 Create patterns to protect information
from unauthorized access.

Networks & the
Internet

Cybersecurity Abstraction 4.4

Descriptive Statement

Encryption is the process of converting information or data into a code, especially to prevent unauthorized access. At this level, students use
patterns as a code for encryption, to protect information. Patterns should be decodable to the party for whom the message is intended, but
difficult or impossible for those with unauthorized access.

For example, students could create encrypted messages via flashing a flashlight in Morse code. Other students could decode this established
language even if it wasn’t meant for them. To model the idea of protecting data, students should create their own variations on or changes to
Morse code. This ensures that when a member of that group flashes a message only other members of their group can decode it, even if other
students in the room can see it (CA NGSS: 4-PS4-3).

Alternatively, students could engage in a CS Unplugged activity that models public key encryption: One student puts a paper containing a
written secret in a box, locks it with a padlock, and hands the box to a second student. Student 2 puts on a second padlock and hands it
back. Student 1 removes her lock and hands the box to student 2 again. Student 2 removes his lock, opens the box, and has access to the
secret that student 1 sent him. Because the box always contained at least one lock while in transit, an outside party never had the opportunity
to see the message and it is protected.

56 | California K–12 Computer Science Standards California Department of Education

3-5.DA.7

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.DA.7 Explain that the amount of space
required to store data differs based
on the type of data and/or level of
detail.

Data & Analysis Storage Abstraction 4.2

Descriptive Statement

All saved data requires space to store it, whether locally or not (e.g., on the cloud). Music, images, video, and text require different amounts
of storage. Video will often require more storage and different format than music or images alone because video combines both. The level of
detail represented by that data also affects storage requirements. For instance, two pictures of the same object can require different amounts
of storage based upon their resolution, and a high-resolution photo could require more storage than a low-resolution video. Students select
appropriate storage for their data.

For example, students could create an image using a standard drawing app. They could save the image in different formats (e.g., .png, .jpg,
.pdf) and compare file sizes. They should also notice that different file sizes can result in differences in quality or resolution (e.g., some
pictures could be more pixelated while some could be sharper).

Alternatively, in an unplugged activity, students could represent images by coloring in squares within a large grid. They could model how a
larger grid requires more storage but also represents a clearer image (i.e., higher resolution).

California Department of Education California K–12 Computer Science Standards | 57

3-5.DA.8

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.DA.8 Organize and present collected data
visually to highlight relationships and
support a claim.

Data & Analysis Collection
Visualization &
Transformation

Communicating 7.1

Descriptive Statement

Raw data has little meaning on its own. Data is often sorted or grouped to provide additional clarity. Organizing data can make interpreting
and communicating it to others easier. Data points can be clustered by a number of commonalities. The same data could be manipulated in
different ways to emphasize particular aspects or parts of the data set.

For example, students could create and administer electronic surveys to their classmates. Possible topics could include favorite books, family
heritage, and after school activities. Students could then create digital displays of the data they have collected such as column histogram
charts showing the percent of respondents in each grade who selected a particular favorite book. Finally, students could make quantitative
statements supported by the data such as which books are more appealing to specific ages of students. As an extension, students could write
an opinion piece stating a claim and supporting it with evidence from the data they collected (CA CCSS for Mathematics 3.MD.3, 4.MD.4,
5.MD.2) (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1).

Alternatively, students could represent data in tables and graphical displays to describe weather experienced in the last several years. They
could select the type of graphical display based on the specific data represented (e.g., daily high/low temperatures on a scatter plot, average
temperatures for a month across years in a column chart). Students could then make a claim about expected weather in future months based
on the data (CA NGSS: 3-ESS2-1).

58 | California K–12 Computer Science Standards California Department of Education

3-5.DA.9

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.DA.9 Use data to highlight and/or propose
relationships, predict outcomes, or
communicate ideas.

Data & Analysis Inference &
Models

Communicating 7.1

Descriptive Statement

The accuracy of data analysis is related to how the data is represented. Inferences or predictions based on data are less likely to be accurate
if the data is insufficient, incomplete, or inaccurate or if the data is incorrect in some way. Additionally, people select aspects and subsets
of data to be transformed, organized, and categorized. Students should be able to refer to data when communicating an idea, in order to
highlight and/or propose relationships, predict outcomes, highlight different views and/or communicate insights and ideas.

For example, students can be provided a scenario in which they are city managers who have a specific amount of funds to improve a city in
California. Students can collect data of a city concerning land use, vegetation, wildlife, climate, population density, services and transportation
(HSS.4.1.5) to determine and present what area needs to be focused on to improve a problem. Students can compare their data and
planned use of funds with peers, clearly communicating or predict outcomes based on data collected (CA CCCS for ELA/Literacy SL.3.1,
SL.4.1, SL.5.1).

Alternatively, students could record the temperature at noon each day to show that temperatures are higher in certain months of the year. If
temperatures are not recorded on non-school days or are recorded incorrectly, the data would be incomplete and ideas being communicated
could be inaccurate. Students may also record the day of the week on which the data was collected, but this would have no relevance to
whether temperatures are higher or lower. In order to have sufficient and accurate data on which to communicate the idea, students might use
data provided by a governmental weather agency (CA NGSS: 3-ESS2-1).

California Department of Education California K–12 Computer Science Standards | 59

3-5.AP.10

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.AP.10 Compare and refine multiple
algorithms for the same task
and determine which is the most
appropriate.

Algorithms &
Programming

Algorithms Testing,
Computational
Problems

6.3, 3.3

Descriptive Statement

Different algorithms can achieve the same result, though sometimes one algorithm might be more appropriate for a specific solution. Students
examine different ways to solve the same task and decide which would be the better solution for the specific scenario.

For example, students could use a map and create multiple algorithms to model the early land and sea routes to and from European
settlements in California. They could then compare and refine their algorithms to reflect faster travel times, shorter distances, or avoid specific
characteristics, such as mountains, deserts, ocean currents, and wind patterns (HSS.4.2.2).

Alternatively, students could identify multiple algorithms for decomposing a fraction into a sum of fractions with the same denominator and
record each decomposition with an equation (e.g., 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8). Students could then select the most efficient
algorithm (e.g., fewest number of steps) (CA CCSS for Mathematics 4.NF.3b).

Additionally, students could compare algorithms that describe how to get ready for school and modify them for supporting different goals
including having time to care for a pet, being able to talk with a friend before classes start, or taking a longer route to school to accompany
a younger sibling to their school first. Students could then write an opinion piece, justifying with reasons their selected algorithm is most
appropriate (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1).

60 | California K–12 Computer Science Standards California Department of Education

3-5.AP.11

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.AP.11 Create programs that use variables to
store and modify data.

Algorithms &
Programming

Variables Creating 5.2

Descriptive Statement

Variables are used to store and modify data. Students use variables in programs they create. At this level, students may need guidance in
identifying when to create variables (i.e., performing the abstraction).

For example, students could create a game to represent predators and prey in an ecosystem. They could declare a “score” variable, assign
it to 0 at the start of the game, and add 1 (increment) the score each time the predator captures its prey. They could also declare a second
“numberOfLives” variable, assign it to 3 at the start of the game, and subtract 1 (decrement) each time a prey is captured. They could program
the game to end when “numberOfLives” equals 0 (CA NGSS: 5-LS2-1) (CA CCSS for Mathematics 5.OA.3).

Alternatively, when students create programs to draw regular polygons, they could use variables to store the line size, line color, and/or side
length. Students can extend learning by creatively combining a variety of polygons to create digital artwork, comparing and contrasting this to
another work of art made by the use of different art tools and media, such as watercolor or tempera paints (CA CCSS for Mathematics 3.G.1)
(VAPA Visual Arts 3.1.4).

California Department of Education California K–12 Computer Science Standards | 61

3-5.AP.12

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.AP.12 Create programs that include events,
loops, and conditionals.

Algorithms &
Programming

Control Creating 5.2

Descriptive Statement

Control structures specify the order (sequence) in which instructions are executed within a program and can be combined to support the
creation of more complex programs. Events allow portions of a program to run based on a specific action. Conditionals allow for the execution
of a portion of code in a program when a certain condition is true. Loops allow for the repetition of a sequence of code multiple times.

For example, students could program an interactive map of the United States of America. They could use events to initiate a question when the
user clicks on a state and conditionals to check whether the user input is correct. They could use loops to repeat the question until the user
answers correctly or to control the length of a “congratulations” scenario that plays after a correct answer (HSS.5.9).

Alternatively, students could write a math fluency game that asks products of two one-digit numbers and then uses a conditional to check
whether or not the answer that was entered is correct. They could use a loop to repeatedly ask another question. They could use events to
allow the user to click on a green button to play again or a red button to end the game (CA CCSS for Mathematics 3.OA.7).

Additionally, students could create a program as a role-playing game based on a literary work. Loops could be used to animate a character’s
movement. When reaching a decision point in the story, an event could initiate the user to type a response. A conditional could change the
setting or have the story play out differently based on the user input (CA CCSS for ELA/Literacy RL.5.3).

62 | California K–12 Computer Science Standards California Department of Education

3-5.AP.13

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.AP.13 Decompose problems into smaller,
manageable tasks which may
themselves be decomposed.

Algorithms &
Programming

Modularity Computational
Problems

3.2

Descriptive Statement

Decomposition is the act of breaking down tasks into simpler tasks. This manages complexity in the problem solving and program
development process.

For example, students could create an animation to represent a story they have written. Students write a story and then break it down into
different scenes. For each scene, they would select a background, place characters, and program actions in that scene (CA CCSS for ELA/
Literacy W.3.3, W.4.3, W.5.3).

Alternatively, students could create a program to allow classmates to present data collected in an experiment. For example, if students
collected rain gauge data once per week for 3 months, students could break down the program tasks: (1) ask the user to input 12 weeks’
worth of data, (2) process the data (e.g., add the first four entries to calculate the rain amount for month 1, convert to metric system
measurements), and (3) direct the creation or resizing of objects (e.g., one rectangular chart bar for each month) to represent the total
number of rainfall for that month (CA NGSS: 3-ETS-1-2) (CA CCSS for Mathematics 3.MD.2).

California Department of Education California K–12 Computer Science Standards | 63

3-5.AP.14

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.AP.14 Create programs by incorporating
smaller portions of existing programs,
to develop something new or add
more advanced features.

Algorithms &
Programming

Modularity,
Program
Development

Abstraction,
Creating

4.2, 5.3

Descriptive Statement

Programs can be broken down into smaller parts, which can be incorporated into new or existing programs. Students incorporate predefined
functions into their original designs. At this level, students do not need to understand all of the underlying implementation details of the
abstractions that they use.

For example, students could use code from a ping pong animation to make a ball bounce in a new basketball game. They could also
incorporate code from a single-player basketball game to create a two-player game with slightly different rules.

Alternatively, students could remix an animated story and add their own conclusion and/or additional dialogue (CA CCSS for ELA/Literacy
W.3.3.B, W.3.3.D, W.4.3.B, W.4.3.E, W.5.3.B, W.5.3.E).

Additionally, when creating a game that occurs on the moon or planets, students could incorporate and modify code that simulates gravity on
Earth. They could modify the strength of the gravitational force based on the mass of the planet or moon (CA NGSS: 5-PS2-1).

64 | California K–12 Computer Science Standards California Department of Education

3-5.AP.15

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.AP.15 Use an iterative process to plan and
develop a program by considering
the perspectives and preferences of
others.

Algorithms &
Programming

Program
Development

Inclusion,
Creating

1.1, 5.1

Descriptive Statement

Planning is an important part of the iterative process of program development. Students gain a basic understanding of the importance and
process of planning before beginning to write code for a program. They plan the development of a program by outlining key features, time and
resource constraints, and user expectations. Students should document the plan as, for example, a storyboard, flowchart, pseudocode, or
story map.

For example, students could collaborate with a partner to plan and develop a program that graphs a function. They could iteratively modify the
program based on feedback from diverse users, such as students who are color blind and may have trouble differentiating lines on a graph
based on the color (CA CCSS for Mathematics 5.G.1, 5.G.2).

Alternatively, students could plan as a team to develop a program to display experimental data. They could implement the program in stages,
generating basic displays first and then soliciting feedback from others on how easy it is to interpret (e.g., are labels clear and readable?,
are lines thick enough?, are titles understandable?). Students could iteratively improve their display to make it more readable and to better
support the communication of the finding of the experiment (NGSS.3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3).

California Department of Education California K–12 Computer Science Standards | 65

3-5.AP.16

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.AP.16 Observe intellectual property rights
and give appropriate attribution when
creating, remixing, or combining
programs.

Algorithms &
Programming

Program
Development

Creating,
Communicating

5.2, 7.3

Descriptive Statement

Intellectual property rights can vary by country, but copyright laws give the creator of a work a set of rights and prevents others from copying
the work and using it in ways that they may not like. Students consider common licenses that place limitations or restrictions on the use of
others’ work, such as images and music downloaded from the internet. When incorporating the work of others, students attribute the work. At
this level, students could give attribution by including credits or links directly in their programs, code comments, or separate project pages.

For example, when making a program to model the life cycle of a butterfly, students could modify and reuse an existing program that describes
the life cycle of a frog. Based on their research, students could identify and use Creative Commons-licensed or public domain images and
sounds of caterpillars and butterflies. Students give attribution by properly citing the source of the original piece as necessary (CA NGSS:
3-LS-1-1) (CA CCSS for ELA/Literacy W.3.8, W.4.8, W.5.8).

Alternatively, when creating a program explaining the structure of the United States government, students find Creative Commons-licensed or
public domain images to represent the three branches of government and attribute ownership of the images appropriately. If students find and
incorporate an audio file of a group playing part of the national anthem, they appropriately give attribution on the project page (HSS.3.4.4).

66 | California K–12 Computer Science Standards California Department of Education

3-5.AP.17

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.AP.17 Test and debug a program or
algorithm to ensure it accomplishes
the intended task.

Algorithms &
Programming

Program
Development

Testing 6.2

Descriptive Statement

Programs do not always run properly. Students need to understand how to test and make necessary corrections to their programs to ensure
they run properly. Students successfully identify and fix errors in (debug) their programs and programs created by others. Debugging strategies
at this level may include testing to determine the first place the solution is in error and fixing accordingly, leaving “breadcrumbs” in a program,
and soliciting assistance from peers and online resources.

For example, when students are developing a program to control the movement of a robot in a confined space, students test various inputs
that control movement of the robot to make sure it behaves as intended (e.g., if an input would cause the robot to move past a wall of the
confined space, it should not move at all) (CA NGSS: 3-5-ETS1-3).

Additionally, students could test and debug an algorithm by tracing the inputs and outputs on a whiteboard. When noticing “bugs” (errors),
students could identify what was supposed to happen and step through the algorithm to locate and then correct the error.

California Department of Education California K–12 Computer Science Standards | 67

3-5.AP.18

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.AP.18 Perform different roles when
collaborating with peers during the
design, implementation, and review
stages of program development.

Algorithms &
Programming

Program
Development

Collaborating 2.2

Descriptive Statement

Collaborative computing is the process of creating computational artifacts by working in pairs or on teams. It involves asking for the
contributions and feedback of others. Effective collaboration can often lead to better outcomes than working independently. With teacher
guidance, students take turns in different roles during program development, such as driver, navigator, notetaker, facilitator, and debugger, as
they design and implement their program.

For example, while taking on different roles during program development, students could create and maintain a journal about their
experiences working collaboratively (CA CCSS for ELA/Literacy W.3.10, W.4.10, W.5.10) (CA NGSS: 3-5-ETS1-2).

68 | California K–12 Computer Science Standards California Department of Education

3-5.AP.19

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.AP.19 Describe choices made during
program development using code
comments, presentations, and
demonstrations.

Algorithms &
Programming

Program
Development

Communicating 7.2

Descriptive Statement

People communicate about their code to help others understand and use their programs. Explaining one’s design choices gives others a better
understanding of one’s work. Students may explain their step-by-step process of creating a program in a presentation or demonstration of
their personal code journals. They describe how comments within code organize thought and process during the development of the program.

For example, students could describe the decision to have the score in a game flash when it can be rounded to 100 by writing a comment in
the code (CA CCSS for Mathematics 3.NBT.1).

Alternatively, students could present their overall program development experience and justify choices made by using storyboards, annotated
images, videos, and/or journal entries (CA CCSS for ELA/Literacy SL.3.4, SL.4.4, SL.5.4, SL.3.5, SL.4.5, SL.5.5) (CA NGSS: 3-5-ETS1-1, 3.5-
ETS1-2, 3.5-ETS1-3).

California Department of Education California K–12 Computer Science Standards | 69

3-5.IC.20

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.IC.20 Discuss computing technologies that
have changed the world, and express
how those technologies influence, and
are influenced by, cultural practices.

Impacts of
Computing

Culture Computational
Problems

3.1

Descriptive Statement

New computing technologies are created and existing technologies are modified for many reasons, including to increase their benefits,
decrease their risks, and meet societal needs. Students, with guidance from their teacher, discuss topics that relate to the history of
computing technologies and changes in the world due to these technologies. Topics could be based on current news content, such as
robotics, wireless internet, mobile computing devices, GPS systems, wearable computing, and how social media has influenced social and
political changes.

For example, students could conduct research in computing technologies that impact daily life such as self-driving cars. They engage in a
collaborative discussion describing impacts of these advancements (e.g., self-driving cars could reduce crashes and decrease traffic, but
there is a cost barrier to purchasing them) (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7, SL.3.1, SL.4.1, SL.5.1).

Alternatively, students could discuss how technological advancements affected the entertainment industry and then compare and contrast the
impacts on audiences. For instance, people with access to high-speed internet may be able to choose to utilize streaming media (which may
cost less than traditional media options), but those in rural areas may not have the same access and be able to reap those benefits (VAPA
Theatre Arts 4.3.2, 4.4.2).

70 | California K–12 Computer Science Standards California Department of Education

3-5.IC.21

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.IC.21 Propose ways to improve the
accessibility and usability of
technology products for the diverse
needs and wants of users.

Impacts of
Computing

Culture Inclusion 1.2

Descriptive Statement

The development and modification of computing technology is driven by people’s needs and wants and can affect groups differently. Students
anticipate the needs and wants of diverse end users and propose ways to improve access and usability of technology, with consideration of
potential perspectives of users with different backgrounds, ability levels, points of view, and disabilities.

For example, students could research a wide variety of disabilities that would limit the use of traditional computational tools for the creation of
multimedia artifacts, including digital images, songs, and videos. Students could then brainstorm and propose new software that would allow
students that are limited by the disabilities to create similar artifacts in new ways (e.g., graphical display of music for the deaf, the sonification
of images for visually impaired students, voice input for those that are unable to use traditional input like the mouse and the keyboard) (CA
CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7).

Alternatively, as they anticipate unique user needs, students may consider using both speech and text to convey information in a game. They
may also wish to vary the types of programs they create, knowing that not everyone shares their own tastes (CA NGSS: 3-5-ETS1-1, 3-5-ETS1-
2, 3-5-ETS1-3).

California Department of Education California K–12 Computer Science Standards | 71

3-5.IC.22

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.IC.22 Seek and explain the impact of
diverse perspectives for the purpose
of improving computational artifacts.

Impacts of
Computing

Social
Interactions

Inclusion 1.1

Descriptive Statement

Computing technologies enable global collaboration and sharing of ideas. Students solicit feedback from a diverse group of users and
creators and explain how this input improves their computational artifacts.

For example, students could seek feedback from classmates via user surveys, in order to create an idea and then make a claim as to how to
improve the overall structure and function of their computational artifact. Using the feedback students could write an opinion piece supporting
their claim (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1).

Alternatively, with guidance from their teacher, students could use video conferencing tools, shared documents, or other online collaborative
spaces, such as blogs, wikis, forums, or website comments, to gather and synthesize feedback from individuals and groups about
programming projects (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1).

72 | California K–12 Computer Science Standards California Department of Education

3-5.IC.23

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

3–5 3-5.IC.23 Describe reasons creators might limit
the use of their work.

Impacts of
Computing

Safety Law &
Ethics

Communicating 7.3

Descriptive Statement

Ethical complications arise from the opportunities provided by computing. With the ease of sending and receiving copies of media on the
internet, in formats such as video, photos, and music, students consider the opportunities for unauthorized use, such as online piracy and
disregard of copyrights. The license of a downloaded image or audio file may restrict modification, require attribution, or prohibit use entirely.

For example, students could take part in a collaborative discussion regarding reasons why musicians who sell their songs in digital format
choose to license their work so that they can earn money for their creative efforts. If others share the songs without paying for them, the
musicians do not benefit financially and may struggle to produce music in the future (CA CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1).

Alternatively, students could review the rights and reproduction guidelines for digital artifacts on a publicly accessible media source. They
could then state an opinion with reasons they believe these guidelines are in place (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)

California Department of Education California K–12 Computer Science Standards | 73

6–8
6-8.CS.1

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.CS.1 Design modifications to computing
devices in order to improve the ways
users interact with the devices.

Computing
Systems

Devices Inclusion,
Computational
Problems

1.2, 3.3

Descriptive Statement

Computing devices can extend the abilities of humans, but design considerations are critical to make these devices useful. Students suggest
modifications to the design of computing devices and describe how these modifications would improve usability.

For example, students could create a design for the screen layout of a smartphone that is more usable by people with vision impairments or
hand tremors. They might also design how to use the device as a scanner to convert text to speech.

Alternatively, students could design modifications for a student ID card reader to increase usability by planning for scanner height, need of
scanner device to be connected physically to the computer, robustness of scanner housing, and choice of use of RFID or line of sight scanners
(CA NGSS: MS-ETS1-1).

74 | California K–12 Computer Science Standards California Department of Education

6-8.CS.2

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.CS.2 Design a project that combines
hardware and software components
to collect and exchange data.

Computing
Systems

Hardware &
Software

Creating 5.1

Descriptive Statement

Collecting and exchanging data involves input, output, storage, and processing. When possible, students select the components for their
project designs by considering tradeoffs between factors such as functionality, cost, size, speed, accessibility, and aesthetics. Students do not
need to implement their project design in order to meet this standard.

For example, students could design a mobile tour app that displays information relevant to specific locations when the device is nearby or
when the user selects a virtual stop on the tour. They select appropriate components, such as GPS or cellular-based geolocation tools, textual
input, and speech recognition, to use in their project design.

Alternatively, students could design a project that uses a sensor to collect the salinity, moisture, and temperature of soil. They may select a
sensor that connects wirelessly through a Bluetooth connection because it supports greater mobility, or they could instead select a physical
USB connection that does not require a separate power source (CA NGSS: MS-ETS1-1, MS-ETS1-2).

California Department of Education California K–12 Computer Science Standards | 75

6-8.CS.3

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.CS.3 Systematically apply troubleshooting
strategies to identify and resolve
hardware and software problems in
computing systems.

Computing
Systems

Troubleshooting Testing 6.2

Descriptive Statement

When problems occur within computing systems, it is important to take a structured, step-by-step approach to effectively solve the problem
and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow
diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components.
Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing
device itself but to devices connected to it.

For example, students could work through a checklist of solutions for connectivity problems in a lab of computers connected wirelessly or
through physical cables. They could also search for technical information online and engage in technical reading to create troubleshooting
documents that they then apply (CA CCSS for ELA/Literacy RST.6-8.10).

Alternatively, students could explore and utilize operating system tools to reset a computer’s default language to English.

Additionally, students could swap out an externally-controlled sensor giving fluctuating readings with a new sensor to check whether there is a
hardware problem.

76 | California K–12 Computer Science Standards California Department of Education

6-8.NI.4

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.NI.4 Model the role of protocols in
transmitting data across networks and
the internet.

Networks & the
Internet

Network
Communication
& Organization

Abstraction 4.4

Descriptive Statement

Protocols are rules that define how messages between computers are sent. They determine how quickly and securely information is
transmitted across networks, as well as how to handle errors in transmission. Students model how data is sent using protocols to choose the
fastest path and to deal with missing information. Knowledge of the details of how specific protocols work is not expected. The priority at this
grade level is understanding the purpose of protocols and how they enable efficient and errorless communication.

For example, students could devise a plan for sending data representing a textual message and devise a plan for resending lost information.

Alternatively, students could devise a plan for sending data to represent a picture, and devise a plan for interpreting the image when pieces of
the data are missing.

Additionally, students could model the speed of sending messages by Bluetooth, Wi-Fi, or cellular networks and describe ways errors in data
transmission can be detected and dealt with.

California Department of Education California K–12 Computer Science Standards | 77

6-8.NI.5

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.NI.5 Explain potential security threats and
security measures to mitigate threats.

Networks & the
Internet

Cybersecurity Computational
Problems

3.1, 3.3

Descriptive Statement

Cybersecurity is an important field of study and it is valuable for students to understand the need for protecting sensitive data. Students
identify multiple methods for protecting data and articulate the value and appropriateness for each method. Students are not expected to
implement or explain the implementation of such technologies.

For example, students could explain the importance of keeping passwords hidden, setting secure router administrator passwords, erasing a
storage device before it is reused, and using firewalls to restrict access to private networks.

Alternatively, students could explain the importance of two-factor authentication and HTTPS connections to ensure secure data transmission.

78 | California K–12 Computer Science Standards California Department of Education

6-8.NI.6

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.NI.6 Apply multiple methods of information
protection to model the secure
transmission of information.

Networks & the
Internet

Cybersecurity Abstraction 4.4

Descriptive Statement

Digital information is protected using a variety of cryptographic techniques. Cryptography is essential to many models of cybersecurity. At its
core, cryptography has a mathematical foundation. Cryptographic encryption can be as simple as letter substitution or as complicated as
modern methods used to secure networks and the internet. Students encode and decode messages using encryption methods, and explore
different levels of complexity used to hide or secure information.

For example, students could identify methods of secret communication used during the Revolutionary War (e.g., ciphers, secret codes,
invisible ink, hidden letters) and then secure their own methods such as substitution ciphers or steganography (i.e., hiding messages inside a
picture or other data) to compose a message from either the Continental Army or British Army (HSS.8.1).

Alternatively, students could explore functions and inverse functions for encryption and decryption and consider functions that are complex
enough to keep data secure from their peers (CA CCSS for Mathematics 8.F.1).

California Department of Education California K–12 Computer Science Standards | 79

6-8.DA.7

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.DA.7 Represent data in multiple ways. Data & Analysis Storage Abstraction 4.4

Descriptive Statement

Computers store data as sequences of 0s and 1s (bits). Software translates to and from this low-level representation to higher levels that are
understandable by people. Furthermore, higher level data can be represented in multiple ways, such as the digital display of a color and its
corresponding numeric RGB value, or a bar graph, a pie chart, and table representation of the same data in a spreadsheet.

For example, students could use a color picker to explore the correspondence between the digital display or name of a color (high-level
representations) and its RGB value or hex code (low-level representation).

Alternatively, students could translate a word (high-level representation) into Morse code or its corresponding sequence of ASCII codes (low-
level representation).

80 | California K–12 Computer Science Standards California Department of Education

6-8.DA.8

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.DA.8 Collect data using computational
tools and transform the data to make
it more useful.

Data & Analysis Collection
Visualization &
Transformation

Communicating 7.1

Descriptive Statement

Data collection has become easier and more ubiquitous. The cleaning of data is an important transformation for ensuring consistent format,
reducing noise and errors (e.g., removing irrelevant responses in a survey), and/or making it easier for computers to process. Students build
on their ability to organize and present data visually to support a claim, understanding when and how to transform data so information can be
more easily extracted. Students also transform data to highlight or expose relationships.

For example, students could use computational tools to collect data from their peers regarding the percentage of time technology is used for
school work and entertainment, and then create digital displays of their data and findings. Students could then transform the data to highlight
relationships representing males and females as percentages of a whole instead of as individual counts (CA CCSS for Mathematics 6.SP.4,
7.SP.3, 8.SP.1, 8.SP.4).

Alternatively, students could collect data from online forms and surveys, from a sensor, or by scraping a web page, and then transform the
data to expose relationships. They could highlight the distribution of data (e.g., words on a web page, readings from a sensor) by giving
quantitative measures of center and variability (CA CCSS for Mathematics 6.SP.5.c, 7.SP.4).

California Department of Education California K–12 Computer Science Standards | 81

6-8.DA.9

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.DA.9 Test and analyze the effects of
changing variables while using
computational models.

Data & Analysis Inference &
Models

Abstraction,
Testing

4.4, 6.1

Descriptive Statement

Variables within a computational model may be changed, in order to alter a computer simulation or to more accurately represent how various
data is related. Students interact with a given model, make changes to identified model variables, and observe and reflect upon the results.

For example, students could test a program that makes a robot move on a track by making changes to variables (e.g., height and angle of
track, size and mass of the robot) and discussing how these changes affect how far the robot travels (CA NGSS: MS-PS2-2).

Alternatively, students could test a game simulation and change variables (e.g., skill of simulated players, nature of opening moves) and
analyze how these changes affect who wins the game (CA NGSS: MS-ETS1-3).

Additionally, students could modify a model for predicting the likely color of the next pick from a bag of colored candy and analyze the effects
of changing variables representing the common color ratios in a typical bag of candy (CA CCSS for Mathematics 7.SP.7, 8.SP.4).

82 | California K–12 Computer Science Standards California Department of Education

6-8.AP.10

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.AP.10 Use flowcharts and/or pseudocode to
design and illustrate algorithms that
solve complex problems.

Algorithms &
Programming

Algorithms Abstraction 4.4, 4.1

Descriptive Statement

Complex problems are problems that would be difficult for students to solve without breaking them down into multiple steps. Flowcharts
and pseudocode are used to design and illustrate the breakdown of steps in an algorithm. Students design and illustrate algorithms using
pseudocode and/or flowcharts that organize and sequence the breakdown of steps for solving complex problems.

For example, students might use a flowchart to illustrate an algorithm that produces a recommendation for purchasing sneakers based on
inputs such as size, colors, brand, comfort, and cost.

Alternatively, students could write pseudocode to express an algorithm for suggesting their outfit for the day, based on inputs such as the
weather, color preferences, and day of the week.

California Department of Education California K–12 Computer Science Standards | 83

6-8.AP.11

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.AP.11 Create clearly named variables that
store data, and perform operations on
their contents.

Algorithms &
Programming

Variables Creating 5.1, 5.2

Descriptive Statement

A variable is a container for data, and the name used for accessing the variable is called the identifier. Students declare, initialize, and update
variables for storing different types of program data (e.g., text, integers) using names and naming conventions (e.g. camel case) that clearly
convey the purpose of the variable, facilitate debugging, and improve readability.

For example, students could program a quiz game with a score variable (e.g. quizScore) that is initially set to zero and increases by increments
of one each time the user answers a quiz question correctly and decreases by increments of one each time a user answers a quiz question
incorrectly, resulting in a score that is either a positive or negative integer (CA CCSS for Mathematics 6.NS.5).

Alternatively, students could write a program that prompts the user for their name, stores the user’s response in a variable (e.g. userName),
and uses this variable to greet the user by name.

84 | California K–12 Computer Science Standards California Department of Education

6-8.AP.12

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.AP.12 Design and iteratively develop
programs that combine control
structures and use compound
conditions.

Algorithms &
Programming

Control Creating 5.1, 5.2

Descriptive Statement

Control structures can be combined in many ways. Nested loops are loops placed within loops, and nested conditionals allow the result of
one conditional to lead to another. Compound conditions combine two or more conditions in a logical relationship (e.g., using AND, OR, and
NOT). Students appropriately use control structures to perform repetitive and selection tasks.

For example, when programming an interactive story, students could use a compound conditional within a loop to unlock a door only if a
character has a key AND is touching the door (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3).

Alternatively, students could use compound conditionals when writing a program to test whether two points lie along the line defined by a
particular linear function (CA CCSS for Mathematics 8.EE.7).

Additionally, students could use nested loops to program a character to do the “chicken dance” by opening and closing the beak, flapping the
wings, shaking the hips, and clapping four times each; this dance “chorus” is then repeated several times in its entirety.

California Department of Education California K–12 Computer Science Standards | 85

6-8.AP.13

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.AP.13 Decompose problems and
subproblems into parts to facilitate
the design, implementation, and
review of programs.

Algorithms &
Programming

Modularity Computational
Problems

3.2

Descriptive Statement

Decomposition facilitates program development by allowing students to focus on one piece at a time (e.g., getting input from the user,
processing the data, and displaying the result to the user). Decomposition also enables different students to work on different parts at the
same time. Students break down (decompose) problems into subproblems, which can be further broken down to smaller parts.

Students could create an arcade game, with a title screen, a game screen, and a win/lose screen with an option to play the game again.
To do this, students need to identify subproblems that accompany each screen (e.g., selecting an avatar goes in the title screen, events for
controlling character action and scoring goes in the game screen, and displaying final and high score and asking whether to play again goes in
the win/lose screen).

Alternatively, students could decompose the problem of calculating and displaying class grades. Subproblems might include: accept input for
students grades on various assignments, check for invalid grade entries, calculate per assignment averages, calculate per student averages,
and display histograms of student scores for each assignment (CA CCSS for Mathematics 6.RP.3c, 6.SP.4, 6.SP.5).

86 | California K–12 Computer Science Standards California Department of Education

6-8.AP.14

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.AP.14 Create procedures with parameters to
organize code and make it easier to
reuse.

Algorithms &
Programming

Modularity Abstraction 4.1, 4.3

Descriptive Statement

Procedures support modularity in developing programs. Parameters can provide greater flexibility, reusability, and efficient use of resources.
Students create procedures and/or functions that are used multiple times within a program to repeat groups of instructions. They generalize
the procedures and/or functions by defining parameters that generate different outputs for a wide range of inputs.

For example, students could create a procedure to draw a circle which involves many instructions, but all of them can be invoked with one
instruction, such as “drawCircle.” By adding a radius parameter, students can easily draw circles of different sizes (CA CCSS for Mathematics
7.G.4).

Alternatively, calculating the area of a regular polygon requires multiple steps. Students could write a function that accepts the number and
length of the sides as parameters and then calculates the area of the polygon. This function can then be re-used inside any program to
calculate the area of a regular polygon (CA CCSS for Mathematics 6.G.1).

California Department of Education California K–12 Computer Science Standards | 87

6-8.AP.15

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.AP.15 Seek and incorporate feedback from
team members and users to refine a
solution that meets user needs.

Algorithms &
Programming

Program
Development

Collaborating,
Inclusion

2.3, 1.1

Descriptive Statement

Development teams that employ user-centered design processes create solutions (e.g., programs and devices) that can have a large societal
impact (e.g., an app that allows people with speech difficulties to allow a smartphone to clarify their speech). Students begin to seek diverse
perspectives throughout the design process to improve their computational artifacts. Considerations of the end-user may include usability,
accessibility, age-appropriate content, respectful language, user perspective, pronoun use, or color contrast.

For example, if students are designing an app to teach their classmates about recycling, they could first interview or survey their classmates
to learn what their classmates already know about recycling and why they do or do not recycle. After building a prototype of the app, the
students could then test the app with a sample of their classmates to see if they learned anything from the app and if they had difficulty using
the app (e.g., trouble reading or understanding text). After gathering interview data, students could refine the app to meet classmate needs
(CA NGSS: MS-ETS1-4).

88 | California K–12 Computer Science Standards California Department of Education

6-8.AP.16

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.AP.16 Incorporate existing code, media, and
libraries into original programs, and
give attribution.

Algorithms &
Programming

Program
Development

Abstraction,
Creating,
Communicating

4.2, 5.2, 7.3

Descriptive Statement

Building on the work of others enables students to produce more interesting and powerful creations. Students use portions of code,
algorithms, digital media, and/or data created by others in their own programs and websites. They give attribution to the original creators to
acknowledge their contributions.

For example, when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump movement from
another person’s game, and they may also import Creative Commons-licensed images to use in the background.

Alternatively, when creating a website to demonstrate their knowledge of historical figures from the Civil War, students may use a
professionally-designed template and public domain images of historical figures (HSS.8.10.5).

Additionally, students could import libraries and connect to web application program interfaces (APIs) to make their own programming
processes more efficient and reduce the number of bugs (e.g., to check whether the user input is a valid date, to input the current
temperature from another city).

California Department of Education California K–12 Computer Science Standards | 89

6-8.AP.17

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.AP.17 Systematically test and refine
programs using a range of test cases.

Algorithms &
Programming

Program
Development

Testing 6.1

Descriptive Statement

Use cases and test cases are created to evaluate whether programs function as intended. At this level, students develop use cases and test
cases with teacher guidance. Testing should become a deliberate process that is more iterative, systematic, and proactive than at lower levels.

For example, students test programs by considering potential errors, such as what will happen if a user enters invalid input (e.g., negative
numbers and 0 instead of positive numbers).

Alternatively, in an interactive program, students could test that the character cannot move off of the screen in any direction, cannot move
through walls, and can interact with other characters. They then adjust character behavior as needed.

90 | California K–12 Computer Science Standards California Department of Education

6-8.AP.18

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.AP.18 Distribute tasks and maintain a
project timeline when collaboratively
developing computational artifacts.

Algorithms &
Programming

Program
Development

Collaborating,
Creating

2.2, 5.1

Descriptive Statement

Collaboration is a common and crucial practice in programming development. Often, many individuals and groups work on the interdependent
parts of a project together. Students assume pre-defined roles within their teams and manage the project workflow using structured timelines.
With teacher guidance, they begin to create collective goals, expectations, and equitable workloads.

For example, students could decompose the design stage of a game into planning the storyboard, flowchart, and different parts of the game
mechanics. They can then distribute tasks and roles among members of the team and assign deadlines.

Alternatively, students could work as a team to develop a storyboard for an animation representing a written narrative, and then program the
scenes individually (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3).

California Department of Education California K–12 Computer Science Standards | 91

6-8.AP.19

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.AP.19 Document programs in order to make
them easier to use, read, test, and
debug.

Algorithms &
Programming

Program
Development

Communicating 7.2

Descriptive Statement

Documentation allows creators, end users, and other developers to more easily use and understand a program. Students provide
documentation for end users that explains their artifacts and how they function (e.g., project overview, user instructions). They also include
comments within code to describe portions of their programs and make it easier for themselves and other developers to use, read, test, and
debug.

For example, students could add comments to describe functionality of different segments of code (e.g., input scores between 0 and 100,
check for invalid input, calculate and display the average of the scores). They could also communicate the process used by writing design
documents, creating flowcharts, or making presentations (CA CCSS for ELA/Literacy SL.6.5, SL.7.5, SL.8.5).

92 | California K–12 Computer Science Standards California Department of Education

6-8.IC.20

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.IC.20 Compare tradeoffs associated with
computing technologies that affect
people’s everyday activities and
career options.

Impacts of
Computing

Culture Communicating 7.2

Descriptive Statement

Advancements in computer technology are neither wholly positive nor negative. However, the ways that people use computing technologies
have tradeoffs. Students consider current events related to broad ideas, including privacy, communication, and automation.

For example, students could compare and contrast the impacts of computing technologies with the impacts of other systems developed
throughout history such as the Pony Express and US Postal System (HSS.7.8.4).

Alternatively, students could identify tradeoffs for both personal and professional uses of a variety of computing technologies. For instance,
driverless cars can increase convenience and reduce accidents, but they may be susceptible to hacking. The emerging industry will reduce the
number of taxi and shared-ride drivers, but may create more software engineering and cybersecurity jobs.

California Department of Education California K–12 Computer Science Standards | 93

6-8.IC.21

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.IC.21 Discuss issues of bias and
accessibility in the design of existing
technologies.

Impacts of
Computing

Culture Inclusion 1.2

Descriptive Statement

Computing technologies should support users of many backgrounds and abilities. In order to maximize accessibility, these differences need
to be addressed by examining diverse populations. With the teacher’s guidance, students test and discuss the usability of various technology
tools, such as apps, games, and devices.

For example, students could discuss the impacts of facial recognition software that works better for lighter skin tones and recognize that
the software was likely developed with a homogeneous testing group. Students could then discuss how accessibility could be improved by
sampling a more diverse population (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1).

94 | California K–12 Computer Science Standards California Department of Education

6-8.IC.22

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.IC.22 Collaborate with many contributors
when creating a computational
artifact.

Impacts of
Computing

Social
Interactions

Collaborating,
Creating

2.4, 5.2

Descriptive Statement

Users have diverse sets of experiences, needs, and wants. These need to be understood and integrated into the design of computational
artifacts. Students use applications that enable crowdsourcing to gather services, ideas, or content from a large group of people. At this level,
crowdsourcing can be done at the local level (e.g., classroom, school, or neighborhood) and/or global level (e.g., age-appropriate online
communities).

For example, a group of students could use electronic surveys to solicit input from their neighborhood regarding an important social or
political issue. They could collaborate with a community artist to combine animations and create a digital community collage informing the
public about various points of view regarding the topic (VAPA Visual Art 8.5.2, 8.5.4).

California Department of Education California K–12 Computer Science Standards | 95

6-8.IC.23

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.IC.23 Compare tradeoffs associated with
licenses for computational artifacts to
balance the protection of the creators’
rights and the ability for others to use
and modify the artifacts.

Impacts of
Computing

Safety Law &
Ethics

Communicating 7.3

Descriptive Statement

Using and building on the works of others allows people to create meaningful works and fosters innovation. Copyright is an important law that
helps protect the rights of creators so they receive credit and get paid for their work. Creative Commons is a kind of copyright that makes it
easier for people to copy, share, and build on creative work, as long as they give credit for it. There are different kinds of Creative Commons
licenses that allow people to do things such as change, remix, or make money from their work. As creators, students can pick and choose how
they want their work to be used, and then create a Creative Commons license that they include in their work.

For example, students could create interactive animations to educate others on bullying or protecting the environment. They then select an
appropriate license to reflect how they want their program to be used by others (e.g., allow others to use their work and alter it, as long as
they do not make a profit from it). Students use established methods to both protect their artifacts and attribute use of protected artifacts.

96 | California K–12 Computer Science Standards California Department of Education

6-8.IC.24

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

6–8 6-8.IC.24 Compare tradeoffs between allowing
information to be public and keeping
information private and secure.

Impacts of
Computing

Safety Law &
Ethics

Communicating 7.2

Descriptive Statement

While it is valuable to establish, maintain, and strengthen connections between people online, security attacks often start with intentionally
or unintentionally providing personal information online. Students identify situations where the value of keeping information public outweighs
privacy concerns, and vice versa. They also recognize practices such as phishing and social engineering and explain best practices to defend
against them.

For example, students could discuss the benefits of artists and designers displaying their work online to reach a broader audience. Students
could also compare the tradeoffs of making a shared file accessible to anyone versus restricting it to specific accounts (CA CCSS for ELA/
Literacy SL.6.1, SL.7.1, SL.8.1).

Alternatively, students could discuss the benefits and dangers of the increased accessibility of information available on the internet, and then
compare this to the advantages and disadvantages of the introduction of the printing press in society (HSS.7.8.4).

California Department of Education California K–12 Computer Science Standards | 97

9–12
9-12.CS.1

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.CS.1 Describe ways in which abstractions
hide the underlying implementation
details of computing systems to
simplify user experiences.

Computing
Systems

Devices Abstraction 4.1

Descriptive Statement

An abstraction is a representation of an idea or phenomenon that hides details irrelevant to the question at hand. Computing systems, both
stand alone and embedded in products, are often integrated with other systems to simplify user experiences.

For example, students could identify geolocation hardware embedded in a smartphone and describe how this simplifies the users experience
since the user does not have to enter her own location on the phone.

Alternatively, students might select an embedded device such as a car stereo, identify the types of data (e.g., radio station presets, volume
level) and procedures (e.g., increase volume, store/recall saved station, mute) it includes, and explain how the implementation details are
hidden from the user.

98 | California K–12 Computer Science Standards California Department of Education

9-12.CS.2

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.CS.2 Compare levels of abstraction and
interactions between application
software, system software, and
hardware.

Computing
Systems

Hardware &
Software

Abstraction 4.1

Descriptive Statement

At its most basic level, a computer is composed of physical hardware on which software runs. Multiple layers of software are built upon
various layers of hardware. Layers manage interactions and complexity in the computing system. System software manages a computing
device’s resources so that software can interact with hardware. Application software communicates with the user and the system software to
accomplish its purpose. Students compare and describe how application software, system software, and hardware interact.

For example, students could compare how various levels of hardware and software interact when a picture is to be taken on a smartphone.
Systems software provides low-level commands to operate the camera hardware, but the application software interacts with system software
at a higher level by requesting a common image file format (e.g., .png) that the system software provides.

California Department of Education California K–12 Computer Science Standards | 99

9-12.CS.3

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.CS.3 Develop guidelines that convey
systematic troubleshooting strategies
that others can use to identify and fix
errors.

Computing
Systems

Troubleshooting Testing 6.2

Descriptive Statement

Troubleshooting complex problems involves the use of multiple sources when researching, evaluating, and implementing potential solutions.
Troubleshooting also relies on experience, such as when people recognize that a problem is similar to one they have seen before and adapt
solutions that have worked in the past.

For example, students could create a list of troubleshooting strategies to debug network connectivity problems such as checking hardware
and software status and settings, rebooting devices, and checking security settings.

Alternatively, students could create troubleshooting guidelines for help desk employees based on commonly observed problems (e.g.,
problems connecting a new device to the computer, problems printing from a computer to a network printer).

100 | California K–12 Computer Science Standards California Department of Education

9-12.NI.4

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.NI.4 Describe issues that impact network
functionality.

Networks & the
Internet

Network
Communication
& Organization

Abstraction 4.1

Descriptive Statement

Many different organizations, including educational, governmental, private businesses, and private households rely on networks to function
adequately in order to engage in online commerce and activity. Quality of Service (QoS) refers to the capability of a network to provide better
service to selected network traffic over various technologies from the perspective of the consumer. Students define and discuss performance
measures that impact network functionality, such as latency, bandwidth, throughput, jitter, and error rate.

For example, students could use online network simulators to explore how performance measures impact network functionality and describe
impacts when various changes in the network occur.

Alternatively, students could describe how pauses in television interviews conducted over satellite telephones are impacted by networking
factors such as latency and jitter.

California Department of Education California K–12 Computer Science Standards | 101

9-12.NI.5

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.NI.5 Describe the design characteristics of
the internet.

Networks & the
Internet

Network
Communication
& Organization

Communicating 7.2

Descriptive Statement

The internet connects devices and networks all over the world. Large-scale coordination occurs among many different machines across
multiple paths every time a web page is opened or an image is viewed online. Through the domain name system (DNS), devices on the
internet can look up Internet Protocol (IP) addresses, allowing end-to-end communication between devices. The design decisions that direct
the coordination among systems composing the internet also allow for scalability and reliability. Students factor historical, cultural, and
economic decisions in their explanations of the internet.

For example, students could explain how hierarchy in the DNS supports scalability and reliability.

Alternatively, students could describe how the redundancy of routing between two nodes on the internet increases reliability and scales as the
internet grows.

102 | California K–12 Computer Science Standards California Department of Education

9-12.NI.6

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.NI.6 Compare and contrast security
measures to address various security
threats.

Networks & the
Internet

Cybersecurity Communication 7.2

Descriptive Statement

Network security depends on a combination of hardware, software, and practices that control access to data and systems. The needs of
users and the sensitivity of data determine the level of security implemented. Potential security problems, such as denial-of-service attacks,
ransomware, viruses, worms, spyware, and phishing, present threats to sensitive data. Students compare and contrast different types of
security measures based on factors such as efficiency, feasibility, ethical impacts, usability, and security. At this level, students are not
expected to develop or implement the security measures that they discuss.

For example, students could review case studies or current events in which governments or organizations experienced data leaks or data
loss as a result of these types of attacks. Students could provide an analysis of actual security measures taken comparing to other security
measure which may have led to different outcomes.

Alternatively, students might discuss computer security policies in place at the local level that present a tradeoff between usability and
security, such as a web filter that prevents access to many educational sites but keeps the campus network safe.

California Department of Education California K–12 Computer Science Standards | 103

9-12.NI.7

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.NI.7 Compare and contrast cryptographic
techniques to model the secure
transmission of information.

Networks & the
Internet

Cybersecurity Computational
Problems,
Abstraction

3.3, 4.4

Descriptive Statement

Cryptography is a technique for transforming information on a computer in such a way that it becomes unreadable by anyone except
authorized parties. Cryptography is useful for supporting secure communication of data across networks. Examples of cryptographic methods
include hashing, symmetric encryption/decryption (private key), and asymmetric encryption/decryption (public key/private key). Students use
software to encode and decode messages using cryptographic methods. Students compare the costs and benefits of using various
cryptographic methods. At this level, students are not expected to perform the mathematical calculations associated with encryption and
decryption.

For example, students could compare and contrast multiple examples of symmetric cryptographic techniques.

Alternatively, students could compare and contrast symmetric and asymmetric cryptographic techniques in which they apply for a given
scenario.

104 | California K–12 Computer Science Standards California Department of Education

9-12.DA.8

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.DA.8 Translate between different
representations of data abstractions
of real-world phenomena, such as
characters, numbers, and images.

Data & Analysis Storage Abstraction 4.1

Descriptive Statement

Computers represent complex real-world concepts such as characters, numbers, and images through various abstractions. Students translate
between these different levels of data representations.

For example, students could convert an HTML (Hyper Text Markup Language) tag for red font into RGB (Red Green Blue), HEX (Hexadecimal
Color Code), HSL (Hue Saturation Lightness), RGBA (Red Green Blue Alpha), or HSLA (Hue Saturation Lightness and Alpha) representations.

Alternatively, students could convert the standard representation of a character such as ! into ASCII or Unicode.

California Department of Education California K–12 Computer Science Standards | 105

9-12.DA.9

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.DA.9 Describe tradeoffs associated with
how data elements are organized and
stored.

Data & Analysis Storage Computational
Problems

3.3

Descriptive Statement

People make choices about how data elements are organized and where data is stored. These choices affect cost, speed, reliability,
accessibility, privacy, and integrity. Students describe implications for a given data organization or storage choice in light of a specific problem.

For example, students might consider the cost, speed, reliability, accessibility, privacy, and integrity tradeoffs between storing photo data on a
mobile device versus in the cloud.

Alternatively, students might compare the tradeoffs between file size and image quality of various image file formats and how choice of format
may be influenced by the device on which it is to be accessed (e.g., smartphone, computer).

106 | California K–12 Computer Science Standards California Department of Education

9-12.DA.10

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.DA.10 Create data visualizations to help
others better understand real-world
phenomena.

Data & Analysis Collection
Visualization &
Transformation

Communicating 5.2

Descriptive Statement

People transform, generalize, simplify, and present large data sets in different ways to influence how other people interpret and understand the
underlying information. Students select relevant data from large or complex data sets in support of a claim or to communicate the information
in a more sophisticated manner. Students use software tools or programming to perform a range of mathematical operations to transform and
analyze data and create powerful data visualizations (that reveal patterns in the data).

For example, students could create data visualizations to reveal patterns in voting data by state, gender, political affiliation, or socioeconomic
status.

Alternatively, students could use U.S. government data on critically endangered animals to visualize population change over time.

California Department of Education California K–12 Computer Science Standards | 107

9-12.DA.11

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.DA.11 Refine computational models to
better represent the relationships
among different elements of data
collected from a phenomenon or
process.

Data & Analysis Inference &
Models

Abstraction,
Testing

4.4, 6.3

Descriptive Statement

Computational models are used to make predictions about processes or phenomena based on selected data and features. They allow people
to investigate the relationships among different variables to understand a system. Predictions are tested to validate models. Students evaluate
these models against real-world observations.

For example, students could use a population model that allows them to speculate about interactions among different species, evaluate the
model based on data gathered from nature, and then refine the model to reflect more complex and realistic interactions.

108 | California K–12 Computer Science Standards California Department of Education

9-12.AP.12

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.AP.12 Design algorithms to solve
computational problems using a
combination of original and existing
algorithms.

Algorithms &
Programming

Algorithms Creating,
Abstraction

5.1, 4.2

Descriptive Statement

Knowledge of common algorithms improves how people develop software, secure data, and store information. Some algorithms may be easier
to implement in a particular programming language, work faster, require less memory to store data, and be applicable in a wider variety of
situations than other algorithms. Algorithms used to search and sort data are common in a variety of software applications.

For example, students could design an algorithm to calculate and display various sports statistics and use common sorting or mathematical
algorithms (e.g., average) in the design of the overall algorithm.

Alternatively, students could design an algorithm to implement a game and use existing randomization algorithms to place pieces randomly in
starting positions or to control the “roll” of a dice or selection of a “card” from a deck.

California Department of Education California K–12 Computer Science Standards | 109

9-12.AP.13

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.AP.13 Create more generalized
computational solutions using
collections instead of repeatedly
using simple variables.

Algorithms &
Programming

Variables Abstraction 4.1

Descriptive Statement

Computers can automate repetitive tasks with algorithms that use collections to simplify and generalize computational problems. Students
identify common features in multiple segments of code and substitute a single segment that uses collections (i.e., arrays, sets, lists) to
account for the differences.

For example, students could take a program that inputs students’ scores into multiple variables and modify it to read these scores into a
single array of scores.

Alternatively, instead of writing one procedure to find averages of student scores and another to find averages of student absences, students
could write a single general average procedure to support both tasks.

110 | California K–12 Computer Science Standards California Department of Education

9-12.AP.14

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.AP.14 Justify the selection of specific control
structures by identifying tradeoffs
associated with implementation,
readability, and performance.

Algorithms &
Programming

Control Creating 5.2

Descriptive Statement

The selection of control structures in a given programming language impacts readability and performance. Readability refers to how clear
the program is to other programmers and can be improved through documentation. Control structures at this level may include, for example,
conditional statements, loops, event handlers, and recursion. Students justify control structure selection and tradeoffs in the process of
creating their own computational artifacts. The discussion of performance is limited to a theoretical understanding of execution time and
storage requirements; a quantitative analysis is not expected.

For example, students could compare the readability and program performance of iterative and recursive implementations of procedures that
calculate the Fibonacci sequence.

Alternatively, students could compare the readability and performance tradeoffs of multiple if statements versus a nested if statement.

California Department of Education California K–12 Computer Science Standards | 111

9-12.AP.15

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.AP.15 Iteratively design and develop
computational artifacts for practical
intent, personal expression, or to
address a societal issue by using
events to initiate instructions.

Algorithms &
Programming

Control Creating 5.1, 5.2, 5.3

Descriptive Statement

In this context, relevant computational artifacts can include programs, mobile apps, or web apps. Events can be user-initiated, such as a
button press, or system-initiated, such as a timer firing.

For example, students might create a tool for drawing on a canvas by first implementing a button to set the color of the pen.

Alternatively, students might create a game where many events control instructions executed (e.g., when a score climbs above a threshold, a
congratulatory sound is played; when a user clicks on an object, the object is loaded into a basket; when a user clicks on an arrow key, the
player object is moved around the screen).

112 | California K–12 Computer Science Standards California Department of Education

9-12.AP.16

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.AP.16 Decompose problems into smaller
subproblems through systematic
analysis, using constructs such as
procedures, modules, and/or classes.

Algorithms &
Programming

Control Abstraction 3.2

Descriptive Statement

Decomposition enables solutions to complex problems to be designed and implemented as more manageable subproblems. Students
decompose a given problem into subproblems that can be solved using existing functionalities, or new functionalities that they design and
implement.

For example, students could design a program for supporting soccer coaches in analyzing their teams’ statistics. They decompose the problem
in terms of managing input, analysis, and output. They decompose the data organization by designing what data will be stored per player, per
game, and per team. Team players may be stored as a collection. Data per team player may include: number of shots, misses, saves, assists,
penalty kicks, blocks, and corner kicks. Students design methods for supporting various statistical analyses and display options. Students
design output formats for individual players or coaches.

California Department of Education California K–12 Computer Science Standards | 113

9-12.AP.17

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.AP.17 Create computational artifacts using
modular design.

Algorithms &
Programming

Modularity Abstraction,
Creating

4.3, 5.2

Descriptive Statement

Computational artifacts are created by combining and modifying existing computational artifacts and/or by developing new artifacts. To
reduce complexity, large programs can be designed as systems of interacting modules, each with a specific role, coordinating for a common
overall purpose. Students should create computational artifacts with interacting procedures, modules, and/or libraries.

For example, students could incorporate a physics library into an animation of bouncing balls.

Alternatively, students could integrate open-source JavaScript libraries to expand the functionality of a web application.

Additionally, students could create their own game to teach Spanish vocabulary words using their own modular design (e.g., including
methods to: control scoring, manage wordlists, manage access to different game levels, take input from the user, etc.).

114 | California K–12 Computer Science Standards California Department of Education

9-12.AP.18

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.AP.18 Systematically design programs for
broad audiences by incorporating
feedback from users.

Algorithms &
Programming

Program
Development

Inclusion,
Creating

1.1, 5.1

Descriptive Statement

Programmers use a systematic design and review process to meet the needs of a broad audience. The process includes planning to meet user
needs, developing software for broad audiences, testing users from a cross-section of the audience, and refining designs based on feedback.

For example, students could create a user satisfaction survey and brainstorm distribution methods to collect feedback about a mobile
application. After collecting feedback from a diverse audience, students could incorporate feedback into their product design.

Alternatively, while developing an e-textiles project with human touch sensors, students could collect data from peers and identify design
changes needed to improve usability by users of different needs.

California Department of Education California K–12 Computer Science Standards | 115

9-12.AP.19

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.AP.19 Explain the limitations of licenses
that restrict use of computational
artifacts when using resources such
as libraries.

Algorithms &
Programming

Program
Development

Communicating 7.3

Descriptive Statement

Software licenses include copyright, freeware, and open-source licensing schemes. Licenses are used to protect the intellectual property of the
author while also defining accessibility of the code. Students consider licensing implications for their own work, especially when incorporating
libraries and other resources.

For example, students might consider two software libraries that address a similar need, justifying their choice of one over the other. The
choice could be based upon least restrictive licensing or further protections for their own intellectual property.

116 | California K–12 Computer Science Standards California Department of Education

9-12.AP.20

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.AP.20 Iteratively evaluate and refine a
computational artifact to enhance its
performance, reliability, usability, and
accessibility.

Algorithms &
Programming

Program
Development

Testing 6.3

Descriptive Statement

Evaluation and refinement of computational artifacts involves measuring, testing, debugging, and responding to the changing needs and
expectations of users. Aspects that can be evaluated include correctness, performance, reliability, usability, and accessibility.

For example, after witnessing common errors with user input in a computational artifact, students could refine the artifact to validate user
input and provide an error message if invalid data is provided.

Alternatively, students could observe a robot in a variety of lighting conditions to determine whether the code controlling a light sensor should
be modified to make it less sensitive.

Additionally, students could also incorporate feedback from a variety of end users to help guide the size and placement of menus and buttons
in a user interface.

California Department of Education California K–12 Computer Science Standards | 117

9-12.AP.21

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.AP.21 Design and develop computational
artifacts working in team roles using
collaborative tools.

Algorithms &
Programming

Program
Development

Collaborating 2.4

Descriptive Statement

Collaborative tools can be as complex as a source code version control system or as simple as a collaborative word processor. Team roles
in pair programming are driver and navigator but students can take on more specialized roles in larger teams. Teachers or students should
choose resources that aid collaborative program development as programs grow more complex.

For example, students might work as a team to develop a mobile application that addresses a problem relevant to the school or community,
using appropriate tools to support actions such as: establish and manage the project timeline; design, share, and revise graphical user
interface elements; implement program components, track planned, in-progress, and completed components, and design and implement user
testing.

118 | California K–12 Computer Science Standards California Department of Education

9-12.AP.22

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.AP.22 Document decisions made during the
design process using text, graphics,
presentations, and/or demonstrations
in the development of complex
programs.

Algorithms &
Programming

Program
Development

Communicating 7.2

Descriptive Statement

Complex programs are often iteratively designed as systems of interacting modules, each with a specific role, coordinating for a common
overall purpose. Comments are included in code both to document the purpose of modules as well as the implementation details within a
module. Together these support documentation of the design process. Students use resources such as libraries and tools to edit and manage
parts of the program and corresponding documentation.

For example, during development of a computational artifact students could comment their code (with date, modification, and rationale),
sketch a flowchart to summarize control flow in a code journal, and share ideas and updates on a white board. Students may document their
logic by explaining the development process and presenting to the class. The presentation could include photos of their white board, a video
or screencast explaining the development process, or recorded audio description.

California Department of Education California K–12 Computer Science Standards | 119

9-12.IC.23

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.IC.23 Evaluate the ways computing impacts
personal, ethical, social, economic,
and cultural practices.

Impacts of
Computing

Culture Computational
Problems,
Inclusion

3.1, 1.2

Descriptive Statement

Computing may improve, harm, or maintain practices. An understanding of how equity deficits, such as minimal exposure to computing,
access to education, and training opportunities, are related to larger, systemic problems in society enables students to create more
meaningful artifacts. Students illustrate the positive, negative, and/or neutral impacts of computing.

For example, students could evaluate the accessibility of a product for a broad group of end users, such as people who lack access to
broadband or who have various disabilities. Students could identify potential bias during the design process and evaluate approaches to
maximize accessibility in product design.

Alternatively, students could evaluate the impact of social media on cultural, economic, and social practices around the world.

120 | California K–12 Computer Science Standards California Department of Education

9-12.IC.24

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.IC.24 Identify impacts of bias and equity
deficit on design and implementation
of computational artifacts and apply
appropriate processes for evaluating
issues of bias.

Impacts of
Computing

Culture Inclusion 1.2

Descriptive Statement

Biases could include incorrect assumptions developers have made about their users, including minimal exposure to computing, access to
education, and training opportunities. Students identify and use strategies to test and refine computational artifacts with the goal of reducing
bias and equity deficits and increasing universal access.

For example, students could use a spreadsheet to chart various forms of equity deficits, and identify solutions in existing software. Students
could use and refine the spreadsheet solutions to create a strategy for methodically testing software specifically for bias and equity.

California Department of Education California K–12 Computer Science Standards | 121

9-12.IC.25

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.IC.25 Demonstrate ways a given algorithm
applies to problems across
disciplines.

Impacts of
Computing

Culture Computational
Problems

3.1

Descriptive Statement

Students identify how a given algorithm can be applied to real-world problems in different disciplines.

For example, students could demonstrate how a randomization algorithm can be used to select participants for a clinical medical trial or to
select a flash card to display on a vocabulary quiz.

Alternatively, students could demonstrate how searching and sorting algorithms are needed to organize records in manufacturing settings, or
to support doctors queries of patient records, or to help governments manage support services they provide to their citizens.

122 | California K–12 Computer Science Standards California Department of Education

9-12.IC.26

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.IC.26 Study, discuss, and think critically
about the potential impacts and
implications of emerging technologies
on larger social, economic, and
political structures, with evidence
from credible sources.

Impacts of
Computing

Culture Communicating 7.2

Descriptive Statement

For example, after studying the rise of artificial intelligence, students create a cause and effect chart to represent positive and negative
impacts of this technology on society.

California Department of Education California K–12 Computer Science Standards | 123

9-12.IC.27

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.IC.27 Use collaboration tools and methods
to increase connectivity with people
of different cultures and careers.

Impacts of
Computing

Social
Interactions

Collaborating 2.4

Descriptive Statement

Increased digital connectivity and communication between people across a variety of cultures and in differing professions has changed the
collaborative nature of personal and professional interaction. Students identify, explain, and use appropriate collaborative tools.

For example, students could compare ways that various technological collaboration tools could help a team become more cohesive and then
choose one of these tools to manage their teamwork.

Alternatively, students could use different collaborative tools and methods to solicit input from not only team members and classmates but
also others, such as participants in online forums or local communities.

124 | California K–12 Computer Science Standards California Department of Education

9-12.IC.28

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.IC.28 Explain the beneficial and harmful
effects that intellectual property laws
can have on innovation.

Impacts of
Computing

Safety Law &
Ethics

Communicating 7.3

Descriptive Statement

Laws and ethics govern aspects of computing such as privacy, data, property, information, and identity. Students explain the beneficial and
harmful effects of intellectual property laws as they relate to potential innovations and governance.

For example, students could explain how patents protect inventions but may limit innovation.

Alternatively, students could explain how intellectual property laws requiring that artists be paid for use of their media might limit the choice of
songs developers can use in their computational artifacts.

California Department of Education California K–12 Computer Science Standards | 125

9-12.IC.29

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.IC.29 Explain the privacy concerns related
to the collection and generation of
data through automated processes.

Impacts of
Computing

Safety Law &
Ethics

Communicating 7.2

Descriptive Statement

Data can be collected and aggregated across millions of people, even when they are not actively engaging with or physically near the
data collection devices. Students recognize automated and non-evident collection of information and the privacy concerns they raise for
individuals.

For example, students could explain the impact on an individual when a social media site’s security settings allows for mining of account
information even when the user is not online.

Alternatively, students could discuss the impact on individuals of using surveillance video in a store to track customers.

Additionally, students could discuss how road traffic can be monitored to change signals in real time to improve road efficiency without drivers
being aware and discuss policies for retaining data that identifies drivers’ cars and their behaviors.

126 | California K–12 Computer Science Standards California Department of Education

9-12.IC.30

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12 9-12.IC.30 Evaluate the social and economic
implications of privacy in the context
of safety, law, or ethics.

Impacts of
Computing

Safety Law &
Ethics

Communicating 7.2

Descriptive Statement

Laws govern many aspects of computing, such as privacy, data, property, information, and identity. International differences in laws and ethics
have implications for computing. Students make and justify claims about potential and/or actual privacy implications of policies, laws, or
ethics and consider the associated tradeoffs, focusing on society and the economy.

For example, students could explore the case of companies tracking online shopping behaviors in order to decide which products to target
to consumers. Students could evaluate the ethical and legal dilemmas of collecting such data without consumer knowledge in order to profit
companies.

Alternatively, students could evaluate the implications of net neutrality laws on society’s access to information and on the impacts to
businesses of varying sizes.

California Department of Education California K–12 Computer Science Standards | 127

9–12 Specialty
9-12S.CS.1

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.CS.1 Illustrate ways computing systems
implement logic through hardware
components.

Computing
Systems

Devices Communicating,
Abstractions

7.2, 4.4

Descriptive Statement

Computing systems use processors (e.g., a central processing unit or CPU) to execute program instructions. Processors are composed of
components that implement the logical or computational operations required by the instructions. AND, OR, and NOT are examples of logic
gates. Adders are examples of higher-leveled circuits built using low-level logic gates. Students illustrate how modern computing devices are
made up of smaller and simpler components which implement the logic underlying the functionality of a computer processor. At this level,
knowledge of how logic gates are constructed is not expected.

For example, students could construct truth tables, draw logic circuit diagrams, or use an online logic circuit simulator. Students could explore
the interaction of the CPU, RAM, and I/O by labeling a diagram of the von Neumann architecture.

Alternatively, students could design higher-level circuits using low-level logic gates (e.g., adders).

128 | California K–12 Computer Science Standards California Department of Education

9-12S.CS.2

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.CS.2 Categorize and describe the different
functions of operating system
software.

Computing
Systems

Hardware &
Software

Communicating 7.2

Descriptive Statement

Operating systems (OS) software is the code that manages the computer’s basic functions. Students describe at a high level the different
functions of different components of operating system software. Examples of functions could include memory management, data storage/
retrieval, processes management, and access control.

For example, students could use monitoring tools including within an OS to inspect the services and functions running on a system and create
an artifact to describe the activity that they observed (e.g., when a browser is running with many tabs open, memory usage is increased). They
could also inspect and describe changes in the activity monitor that occur as different applications are executing (e.g., processor utilization
increases when a new application is launched).

California Department of Education California K–12 Computer Science Standards | 129

9-12S.NI.3

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.NI.3 Examine the scalability and
reliability of networks, by describing
the relationship between routers,
switches, servers, topology, and
addressing.

Networks & the
Internet

Network
Communication
& Organization

Abstractions 4.4

Descriptive Statement

Choice of network topology is determined, in part, by how many devices can be supported and the character of communication needs
between devices. Each device is assigned an address that uniquely identifies it on the network. Routers function by comparing addresses
to determine how information on the network should reach its designation. Switches compare addresses to determine which computers will
receive information. Students explore and explain how network performance degrades when various factors affect the network.

For example, students could use online network simulators to describe how network performance changes when the number of devices
increases.

Alternatively, students could visualize and describe changes to the distribution of network traffic when a router on the network fails.

130 | California K–12 Computer Science Standards California Department of Education

9-12S.NI.4

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.NI.4 Explain how the characteristics of
the internet influence the systems
developed on it.

Networks & the
Internet

Network
Communication
& Organization

Communicating 7.2

Descriptive Statement

The design of the internet includes hierarchy and redundancy to help it scale reliably. An end-to-end architecture means that key functions
are placed at endpoints in the network (i.e., an internet user’s computer and the server hosting a website) rather than in the middle of the
network. Open standards for transmitting information across the internet help fuel its growth. This design philosophy impacts systems and
technologies that integrate with the internet. Students explain how internet-based systems depend on these characteristics.

For example, students could explain how having common, standard protocols enable products and services from different developers to
communicate.

Alternatively, students could describe how the end-to-end architecture and redundancy in routing enables internet users to access information
and services even if part of the network is down; the information can still be routed from one end to another through a different path.

California Department of Education California K–12 Computer Science Standards | 131

9-12S.NI.5

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.NI.5 Develop solutions to security threats. Networks & the
Internet

Cybersecurity Creating 5.3

Descriptive Statement

Designing and implementing cybersecurity measures requires knowledge of software, hardware, and human components and understanding
tradeoffs. Students design solutions to security threats and compare tradeoffs of easier access and use against the costs of losing information
and disrupting services.

For example, students could refine a technology that allows users to use blank or weak passwords.

Alternatively, students could implement a firewall or proxy protection between an organization’s private local area network (LAN) and the
public internet.

Additionally, students could find and close exploitable threats on an infected computer in order to protect information.

132 | California K–12 Computer Science Standards California Department of Education

9-12S.NI.6

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.NI.6 Analyze cryptographic techniques
to model the secure transmission of
information.

Networks & the
Internet

Cybersecurity Computational
Problems,
Abstractions

3.3, 4.2

Descriptive Statement

Cryptography is essential to many models of cybersecurity. Open standards help to ensure cryptographic security. Certificate Authorities (CAs)
issue digital certificates that validate the ownership of encrypted keys used in secured communications across the internet. Students encode
and decode messages using encryption and decryption methods, and they should understand the different levels of complexity to hide or
secure information.

For example, students could analyze the relative designs of private key vs. public key encryption techniques and apply the best choice for a
particular scenario.

Alternatively, students could analyze the design of the Diffie-Helman algorithm to RSA (Rivest–Shamir–Adleman) and apply the best choice for
a particular scenario. They could provide a cost-benefit analysis of runtime and ease of cracking for various encryption techniques which are
commonly used to secure transmission of data over the internet.

California Department of Education California K–12 Computer Science Standards | 133

9-12S.DA.7

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.DA.7 Select and use data collection tools
and techniques to generate data sets.

Data & Analysis Collection
Visualization &
Transformation

Communicating 7.1

Descriptive Statement

Data collection and organization is essential for obtaining new information insights and revealing new knowledge in our modern world.
As computers are able to process larger sets of data, gathering data in an efficient and reliable matter remains important. The choice of
data collection tools and quality of the data collected influences how new information, insights, and knowledge will support claims and be
communicated. Students devise a reliable method to gather information, use software to extract digital data from data sets, and clean and
organize the data in ways that support summaries of information obtained from the data. At this level, students may, but are not required to,
create their own data collection tools.

For example, students could create a computational artifact that records information from a sonic distance sensor to monitor the motion of a
prototype vehicle.

Alternatively, students could develop a reliable and practical way to automatically digitally record the number of animals entering a portion of
a field to graze.

Additionally, students could also find a web site containing data (e.g., race results for a major marathon), scrape the data from the web site
using data collection tools, and format the data so it can be analyzed.

134 | California K–12 Computer Science Standards California Department of Education

9-12S.DA.8

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.DA.8 Use data analysis tools and
techniques to identify patterns in data
representing complex systems.

Data & Analysis Collection
Visualization &
Transformation

Communicating,
Abstraction

7.1, 4.1

Descriptive Statement

Data analysis tools can be useful for identifying patterns in large amounts of data in many different fields. Computers can help with
the processing of extremely large sets of data making very complex systems manageable. Students use computational tools to analyze,
summarize, and visualize a large set of data.

For example, students could analyze a data set containing marathon times and determine how age, gender, weather, and course features
correlate with running times.

Alternatively, students could analyze a data set of social media interactions to identify the most influential users and visualize the
intersections between different social groups.

California Department of Education California K–12 Computer Science Standards | 135

9-12S.DA.9

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.DA.9 Evaluate the ability of models and
simulations to test and support the
refinement of hypotheses.

Data & Analysis Inference &
Models

Abstraction 4.4

Descriptive Statement

A model could be implemented as a diagram or a program that represents key properties of a physical or other system. A simulation is
based on a model, and enables observation of the system as key properties change. Students explore, explain, and evaluate existing models
and simulations, in order to support the refinement of hypotheses about how the systems work. At this level, the ability to accurately and
completely model and simulate complex systems is not expected.

For example, a computer model of ants following a path created by other ants who found food explains the trail-like travel patterns of the
insect. Students could evaluate if the output of the model fits well with their hypothesis that ants navigate the world through the use of
pheromones. They could explain how the computer model supports this hypothesis and how it might leave out certain aspects of ant behavior
and whether these are important to understanding ant travel behavior.

Alternatively, students could hypothesize how different ground characteristics (e.g., soil type, thickness of sediment above bedrock) relate to
the severity of shaking at the surface during an earthquake. They could add or modify input about ground characteristics into an earthquake
simulator, observe the changed simulation output, and then evaluate their hypotheses.

136 | California K–12 Computer Science Standards California Department of Education

9-12S.AP.10

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.10 Describe how artificial intelligence
drives many software and physical
systems.

Algorithms &
Programming

Algorithms Communicating,
Computational
Problems

7.2, 3.1

Descriptive Statement

Artificial intelligence is a sub-discipline of computer science that enables computers to solve problems previously handled by biological
systems. There are many applications of artificial intelligence, including computer vision and speech recognition. Students research and
explain how artificial intelligence has been employed in a given system. Students are not expected to implement an artificially intelligent
system in order to meet this standard.

For example, students could observe an artificially intelligent system and notice where its behavior is not human-like, such as when a
character in a videogame makes a mistake that a human is unlikely to make, or when a computer easily beats even the best human players at
a given game.

Alternatively, students could interact with a search engine asking various questions, and after reading articles on the topic, they could explain
how the computer is able to respond to queries.

California Department of Education California K–12 Computer Science Standards | 137

9-12S.AP.11

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.11 Implement an algorithm that uses
artificial intelligence to overcome a
simple challenge.

Algorithms &
Programming

Algorithms Creating,
Computational
Problems

5.3, 3.1

Descriptive Statement

Artificial intelligence algorithms allow a computer to perceive and move in the world, use knowledge, and engage in problem solving. Students
create a computational artifact that is able to carry out a simple task commonly performed by living organisms. Students do not need to
realistically simulate human behavior or solve a complex problem in order to meet this standard.

For example, students could implement an algorithm for playing tic-tac-toe that would select an appropriate location for the next move.

Alternatively, students could implement an algorithm that allows a solar-powered robot to move to a sunny location when its batteries are low.

138 | California K–12 Computer Science Standards California Department of Education

9-12S.AP.12

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.12 Implement searching and sorting
algorithms to solve computational
problems.

Algorithms &
Programming

Algorithms Abstraction,
Creating

4.2, 5.2

Descriptive Statement

One of the core uses of computers is to store, organize, and retrieve information when working with large amounts of data. Students create
computational artifacts that use searching and/or sorting algorithms to retrieve, organize, or store information. Students do not need to select
their algorithm based on efficiency.

For example, students could write a script to sequence their classmates in order from youngest to oldest.

Alternatively, students could write a program to find certain words within a text and report their location.

California Department of Education California K–12 Computer Science Standards | 139

9-12S.AP.13

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.13 Evaluate algorithms in terms of their
efficiency.

Algorithms &
Programming

Algorithms Abstraction 3.3

Descriptive Statement

Algorithms that perform the same task can be implemented in different ways, which take different amounts of time to run on a given input set.
Algorithms are commonly evaluated using asymptotic analysis (i.e., “Big O”) which involves exploration of behavior when the input set grows
very large. Students classify algorithms by the most common time classes (e.g., log n, linear, n log n, and quadratic or higher).

For example, students could read a given algorithm, identify the control constructs, and in conjunction with input size, identify the efficiency
class of the algorithm.

140 | California K–12 Computer Science Standards California Department of Education

9-12S.AP.14

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.14 Compare and contrast fundamental
data structures and their uses.

Algorithms &
Programming

Variables Abstraction 4.2

Descriptive Statement

Data structures are designed to provide different ways of storing and manipulating data sets to optimize various aspects of storage or runtime
performance. Choice of data structures is made based on expected data characteristics and expected program functions. Students = compare
and contrast how basic functions (e.g.., insertion, deletion, and modification) would differ for common data structures including lists, arrays,
stacks, and queues.

For example, students could draw a diagram of how different data structures change when items are added, deleted, or modified. They could
explain tradeoffs in storage and efficiency issues.

Alternatively, when presented with a description of a program and the functions it would be most likely to be running, students could list pros
and cons for a specific data structure use in that scenario.

California Department of Education California K–12 Computer Science Standards | 141

9-12S.AP.15

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.15 Demonstrate the flow of execution of
a recursive algorithm.

Algorithms &
Programming

Control Computational
Problems,
Communicating

3.2, 7.2

Descriptive Statement

Recursion is a powerful problem-solving approach where the problem solution is built on solutions of smaller instances of the same problem.
A base case, which returns a result without referencing itself, must be defined, otherwise infinite recursion will occur. Students represent a
sequence of calls to a recursive algorithm and show how the process resolves to a solution.

For example, students could draw a diagram to illustrate flow of execution by keeping track of parameter and returned values for each
recursive call.

Alternatively, students could create a video showing the passing of arguments as the recursive algorithm runs.

142 | California K–12 Computer Science Standards California Department of Education

9-12S.AP.16

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.16 Analyze a large-scale computational
problem and identify generalizable
patterns or problem components that
can be applied to a solution.

Algorithms &
Programming

Modularity Computational
Problems,
Abstraction

3.2, 4.2

Descriptive Statement

As students encounter complex, real-world problems that span multiple disciplines or social systems, they need to be able to decompose
problems and apply already developed code as part of their solutions. Students decompose complex problems into manageable subproblems
that could potentially be solved with programs or procedures that can be reused or already exist.

For example, in analyzing an internet radio app, students could identify that users need to create an account and enter a password. They
could identify a common application programming interface (API) for checking and displaying password strength. Additionally, students could
recognize that the songs would need to be sorted by the time last played in order to display the most recently played songs and identify a
common API for sorting dates from most to least recent.

Alternatively, in analyzing the problem of tracking medical treatment in a hospital, students could recognize that patient records need to be
stored in a database and identify a database solution to support quick access and modification of patient records. Additionally, they could
recognize that records in the database need to be stored securely and could identify an encryption API to support the desired level of privacy.

California Department of Education California K–12 Computer Science Standards | 143

9-12S.AP.17

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.17 Construct solutions to problems using
student-created components, such as
procedures, modules, and/or objects.

Algorithms &
Programming

Modularity Abstraction,
Creating

4.3, 5.2

Descriptive Statement

Programmers often address complex tasks through design and decomposition using procedures and/or modules. In object-oriented
programming languages, classes can support this decomposition. Students create a computational artifact that solves a problem through use
of procedures, modules, and/or objects. This problem should be of sufficient complexity to benefit from decomposition and/or use of objects.

For example, students could write a flashcard program in which each card is able to show both the question and answer and record user
history.

Alternatively, students could create a simulation of an ecosystem in which sprites carry out behaviors, such as consuming resources.

144 | California K–12 Computer Science Standards California Department of Education

9-12S.AP.18

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.18 Demonstrate code reuse by creating
programming solutions using libraries
and APIs.

Algorithms &
Programming

Modularity Abstractions,
Creating,
Troubleshooting

4.2, 5.3, 6.2

Descriptive Statement

Code reuse is critical both for managing complexity in modern programs, but also in increasing programming efficiency and reliability by
having programmers reuse code that has been highly vetted and tested. Software libraries allow developers to integrate common and often
complex functionality without having to reimplement that functionality from scratch. Students identify, evaluate, and select appropriate
application programming interfaces (APIs) from software libraries to use with a given language and operating system. They appropriately use
resources such as technical documentation, online forums, and developer communities to learn about libraries and troubleshoot problems
with APIs that they have chosen.

For example, students could import charting and graphing modules to display data sets, adopt an online service that provides cloud storage
and retrieval for a database used in a multiplayer game, or import location services into an app that identifies points of interest on a map.
Libraries of APIs can be student-created or publicly available (e.g., common graphics libraries or map/navigation APIs).

California Department of Education California K–12 Computer Science Standards | 145

9-12S.AP.19

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.19 Plan and develop programs for broad
audiences using a specific software
life cycle process.

Algorithms &
Programming

Program
Development

Collaborating,
Creating

2.2, 2.3, 5.2

Descriptive Statement

Software development processes are used to help manage the design, development, and product/project management of a software solution.
Various types of processes have been developed over time to meet changing needs in the software landscape. The systems development
life cycle (SDLC), also referred to as the application development life cycle, is a term used in systems engineering, information systems, and
software engineering to describe a process for planning, creating, testing, and deploying an information system. Other examples of common
processes could include agile, spiral, or waterfall. Students develop a program following a specific software life cycle process, with proper
scaffolding from the teacher.

For example, students could work in teams on a common project using the agile development process, which is based on breaking product
development work into small increments.

Alternatively, students could be guided in implementing sprints to focus work on daily standup meetings or scrums to support efficient
communication.

146 | California K–12 Computer Science Standards California Department of Education

9-12S.AP.20

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.20 Develop programs for multiple
computing platforms.

Algorithms &
Programming

Program
Development

Creating 5.2

Descriptive Statement

Humans use computers in various forms in their lives and work. Depending on the situation, software solutions are more appropriate or
valuable when available on different computational platforms or devices. Students develop programs for more than one computing platform
(e.g. desktop, web, or mobile).

For example, students could develop a mobile app for a location-aware software product and a different program that is installed on a
computer.

Alternatively, students could create a browser-based product and make it accessible across multiple platforms or computers (e.g., email).

California Department of Education California K–12 Computer Science Standards | 147

9-12S.AP.21

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.21 Identify and fix security issues
that might compromise computer
programs.

Algorithms &
Programming

Program
Development

Troubleshooting 6.2

Descriptive Statement

Some common forms of security issues arise from specific programming languages, platforms, or program implementation choices. Students
read a given a piece of code that contains a common security vulnerability, explain the code’s intended function or purpose, provide and
explain examples of how a specific input could exploit that vulnerability (e.g., the program accessing data or performing in unintended ways),
and implement a change in the code to mitigate this vulnerability.

For example, students could review code that takes a date as input, recognize that the code doesn’t check for appropriate last days of the
month, and modify the code to do that.

Alternatively, students could review code that supports entry of patient data (e.g., height and weight) and doesn’t prompt users to double
check unreasonable values (e.g., height at 6 feet and weight at 20 pounds).

148 | California K–12 Computer Science Standards California Department of Education

9-12S.AP.22

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.22 Develop and use a series of test
cases to verify that a program
performs according to its design
specifications.

Algorithms &
Programming

Program
Development

Testing 6.1

Descriptive Statement

Testing software is a critically important process. The ability of students to identify a set of important test cases communicates their
understanding of the design specifications and potential issues due to implementation choices. Students select and apply their own test
cases to cover both general behavior and the edge cases which show behavior at boundary conditions.

For example, for a program that is supposed to accept test scores in the range of [0,100], students could develop appropriate tests (e.g., a
negative value, 0, 100, and a value above 100).

Alternatively, students developing an app to allow users to create and store calendar appointments could develop and use a series of test
cases for various scenarios including checking for correct dates, flagging for user confirmation when a calendar event is very long, checking for
correct email address format for invitees, and checking for appropriate screen display as users go through the process of adding, editing, and
deleting events.

California Department of Education California K–12 Computer Science Standards | 149

9-12S.AP.23

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.23 Modify an existing program to
add additional functionality and
discuss intended and unintended
implications.

Algorithms &
Programming

Program
Development

Creating,
Abstraction

5.3, 4.2

Descriptive Statement

Modularity and code reuse is key in modern software. However, when code is modified, the programmer should consider relevant situations in
which this code might be used in other places. Students create and document modifications to existing programs that enhance functionality,
and then identify, document, and correct unintended consequences.

For example, students could take an existing a procedure that calculates the average of a set of numbers and returns an integer (which lacks
precision) and modify it to return a floating-point number instead. The student would explain how the change might impact multiple scenarios.

150 | California K–12 Computer Science Standards California Department of Education

9-12S.AP.24

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.24 Evaluate key qualities of a program
through a process such as a code
review.

Algorithms &
Programming

Program
Development

Testing 6.3

Descriptive Statement

Code reviews are a common software industry practice and valuable for developing technical communication skills. Key qualities of code
include correctness, usability, readability, efficiency, and scalability. Students walk through code they created and explain how it works.
Additionally, they follow along when someone else is explaining their code and ask appropriate questions.

For example, students could present their code to a group or visually inspect code in pairs.

Alternatively, in response to another student’s presentation, students could provide feedback including comments on correctness of the code,
comments on how code interacts with code that calls it, and design and documentation features.

California Department of Education California K–12 Computer Science Standards | 151

9-12S.AP.25

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.25 Use version control systems,
integrated development environments
(IDEs), and collaborative tools and
practices (e.g., code documentation)
while developing software within a
group.

Algorithms &
Programming

Program
Development

Collaborating,
Creating

2.4, 5.2

Descriptive Statement

Software development is a process that benefits from the use of tools that manage complexity, iterative development, and collaboration.
Large or complex software projects often require contributions from multiple developers. Version control systems and other collaborative
tools and practices help coordinate the process and products contributed by individuals on a development team. An integrated development
environment (IDE) is a program within which a developer implements, compiles or interprets, tests, debugs, and deploys a software project.
Students use common software development and documentation support tools in the context of a group software development project. At this
level, facility with the full functionality available in the collaborative tools is not expected.

For example, students could use common version control systems to modify and improve code or revert to a previous code version.

Alternatively, students could use appropriate IDEs to support more efficient code design and development.

Additionally, students could use various collaboration, communication, and code documentation tools designed to support groups engaging in
complex and interrelated work.

152 | California K–12 Computer Science Standards California Department of Education

9-12S.AP.26

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.AP.26 Compare multiple programming
languages, and discuss how their
features make them suitable for
solving different types of problems.

Algorithms &
Programming

Program
Development

Communicating 7.2

Descriptive Statement

Particular problems may be more effectively solved using some programming languages than other programming languages. Students provide
a rationale for why a specific programming language is better suited for a solving a particular class of problem.

For example, students could explain how a language with a large library base can make developing a web application easier.

Alternatively, students could explain how languages that support particular programming paradigms (e.g., object-oriented or functional) can
make implementation more aligned with design choices.

Additionally, students could discuss how languages that implement garbage collection are good for simplicity of memory management, but
may result in poor performance characteristics.

California Department of Education California K–12 Computer Science Standards | 153

9-12S.IC.27

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.IC.27 Evaluate computational artifacts with
regard to improving their beneficial
effects and reducing harmful effects
on society.

Impacts of
Computing

Culture Testing,
Inclusion

6.1, 1.2

Descriptive Statement

People design computational artifacts to help make the lives of humans better. Students evaluate an artifact and comment on aspects of it
which positively or negatively impact users and give ideas for reducing the possible negative impacts.

For example, students could discuss how algorithms that screen job candidates’ résumés can cut costs for companies (a beneficial effect) but
introduce or amplify bias in the hiring process (a harmful effect).

Alternatively, students could discuss how turn-by-turn navigation tools can help drivers avoid traffic and find alternate routes (a beneficial
effect), but sometimes channel large amounts of traffic down small neighborhood streets (a harmful effect).

Additionally, students could discuss how social media algorithms can help direct users’ attention to interesting content (a beneficial effect),
while simultaneously limiting users’ exposure to information that contradicts pre-existing beliefs (a harmful effect).

154 | California K–12 Computer Science Standards California Department of Education

9-12S.IC.28

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.IC.28 Evaluate how computational
innovations that have revolutionized
aspects of our culture might evolve.

Impacts of
Computing

Culture Communicating 7.2

Descriptive Statement

It is important to be able to evaluate current technologies and innovations and their potential for future impact on society. Students describe
how a given computational innovation might change in the future and impacts these evolutions could have on society, economy, or culture.

For example, students could consider ways in which computers may support education (or healthcare) in the future, or how developments in
virtual reality might impact arts and entertainment.

Alternatively, students could consider how autonomous vehicles will affect individuals’ car ownership and car use habits as well as industries
that employ human drivers (e.g., trucking, taxi service).

California Department of Education California K–12 Computer Science Standards | 155

9-12S.IC.29

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.IC.29 Evaluate the impact of equity, access,
and influence on the distribution
of computing resources in a global
society.

Impacts of
Computing

Culture Inclusion 1.2

Descriptive Statement

Computers, computation, and technology can help improve the lives of humans and support positive developments in society, economy, and/
or culture. However, access to such resources is not the same for everyone in the world. Students define and evaluate ways in which different
technologies, applications, or computational tools might benefit all people in society or might only benefit those with the greatest access or
resources.

For example, students could describe ways in which groups of people benefit, do not benefit, or could benefit better by access to high-speed
internet connectivity.

Alternatively, students could describe educational impacts of children not having access to a computer in their home.

156 | California K–12 Computer Science Standards California Department of Education

9-12S.IC.30

Grade Standard
Identifier

Standard Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment:
Subpractice(s)

9–12
Specialty

9-12S.IC.30 Debate laws and regulations that
impact the development and use of
software.

Impacts of
Computing

Safety Law &
Ethics

Communicating 7.2

Descriptive Statement

Laws and regulations influence what software gets developed and how society benefits or does not.

For example, students could debate the pros and cons of changes to regulations around net neutrality: Many believe that mandating that
internet service providers (ISPs) maintain net neutrality facilitates competition between internet-based content providers and supports
consumer choice, but others believe such regulations represent government overreach.

Alternatively, students could debate the impacts of different copyright rules in various countries and impacts on economy, society, and culture:
Long-lasting copyrights in the United States enable creators to profit from their works but also prevent works from entering the public domain
where they can be freely used and adapted to create new works.

California Department of Education References and Attributions | 157

References and Attributions

California Department of Education. 2015. English Language
Arts/English Language Development Framework for California
Public Schools, Kindergarten Through Grade Twelve. https://
www.cde.ca.gov/ci/rl/cf/elaeldfrmwrksbeadopted.asp.

California Department of Education. 2016. History–Social Science
Framework for California Public Schools, Kindergarten Through
Grade Twelve. https://www.cde.ca.gov/ci/hs/cf/documents/
hssframeworkwhole.pdf.

Code.org. 2015, July 2. Computer Science Is the Fastest Growing
AP Course of the 2010s [Blog post]. https://blog.code.org/
post/123032125688/apcs-2015.

College Board. 2016. National and state summary reports:
California. https://research.collegeboard.org/programs/ap/
data/archived/ap-2015.

College Board. 2018. Largest Course Launch in AP History.
https://advancesinap.collegeboard.org/stem/ap-computer-
science-principles.

The Conference Board. 2016. National Demand Rate and OES
Employment Data by Occupation [Data file]. https://www.
conference-board.org/.

DeNisco Rayome, A. 2017, June 16. CIO Jury: 83% of CIOs
struggle to find tech talent. TechRepublic. https://www.
techrepublic.com/article/cio-jury-83-of-cios-struggle-to-find-
tech-talent/.

Every Student Succeeds Act of 2015, Pub. L. No. 114-95. 20
U.S.C. 6301 (2016).

Fisher, A. 2015. The Fastest-growing STEM Major in the U.S.
Fortune. https://fortune.com/2015/02/10/college-major-
statistics-fastest-growing/.

Google. n.d. CS First [curriculum]. https://csfirst.withgoogle.com/
en/home.

Google and Gallup. 2015. Searching for Computer Science:
Access and Barriers in U.S. K-12 education. https://services.
google.com/fh/files/misc/searching-for-computer-science_
report.pdf.

References and Attributions

https://www.cde.ca.gov/ci/rl/cf/elaeldfrmwrksbeadopted.asp
https://www.cde.ca.gov/ci/rl/cf/elaeldfrmwrksbeadopted.asp
https://www.cde.ca.gov/ci/hs/cf/documents/hssframeworkwhole.pdf
https://www.cde.ca.gov/ci/hs/cf/documents/hssframeworkwhole.pdf
https://blog.code.org/post/123032125688/apcs-2015
https://blog.code.org/post/123032125688/apcs-2015
https://research.collegeboard.org/programs/ap/data/archived/ap-2015
https://research.collegeboard.org/programs/ap/data/archived/ap-2015
https://advancesinap.collegeboard.org/stem/ap-computer-science-principles
https://advancesinap.collegeboard.org/stem/ap-computer-science-principles
https://www.conference-board.org/
https://www.conference-board.org/
https://www.techrepublic.com/article/cio-jury-83-of-cios-struggle-to-find-tech-talent/
https://www.techrepublic.com/article/cio-jury-83-of-cios-struggle-to-find-tech-talent/
https://www.techrepublic.com/article/cio-jury-83-of-cios-struggle-to-find-tech-talent/
https://fortune.com/2015/02/10/college-major-statistics-fastest-growing/
https://fortune.com/2015/02/10/college-major-statistics-fastest-growing/
https://csfirst.withgoogle.com/en/home
https://csfirst.withgoogle.com/en/home
https://services.google.com/fh/files/misc/searching-for-computer-science_report.pdf
https://services.google.com/fh/files/misc/searching-for-computer-science_report.pdf
https://services.google.com/fh/files/misc/searching-for-computer-science_report.pdf

California Department of Education158 | References and Attributions

Google and Gallup. 2017. Computer Science Learning: Closing the
Gap: Rural and Small Town School Districts. https://services.
google.com/fh/files/misc/computer-science-learning-closing-
the-gap-rural-small-town-brief.pdf.

Horizon Media. 2015, October 5. Horizon Media Study Reveals
Americans Prioritize STEM Subjects Over the Arts; Science is
“Cool,” Coding Is New Literacy. PR Newswire. https://www.
prnewswire.com/news-releases/horizon-media-study-reveals-
americans-prioritize-stem-subjects-over-the-arts-science-is-
cool-coding-is-new-literacy-300154137.html.

K–12 Computer Science Framework. 2016. https://k12cs.org/
wp-content/uploads/2016/09/K%E2%80%9312-Computer-
Science-Framework.pdf.

Level Playing Field Institute. 2015. Path Not Found: Disparities in
Access to CS Courses in California High Schools. https://www.
kaporcenter.org/wp-content/uploads/2017/05/lpfi_path_
not_found_report.pdf.

Papert, S. 2000. “What’s the Big Idea? Toward a Pedagogy of Idea
Power.” IBM Systems Journal, 39 (3/4), 720–729.

Tucker, A., D. McCowan, F. Deek, C. Stephenson, J. Jones, and
A. Verno. 2006. A Model Curriculum for K–12 Computer
Science: Final Report of the ACM K–12 Task Force Curriculum
Committee. 2nd ed. New York, NY: Association for Computing
Machinery.

US Department of Labor, Bureau of Labor Statistics. 2015.
Employment Projections. https://www.bls.gov/emp/tables.
htm.

US Equal Employment Opportunity Commission. 2016. Diversity in
High Tech. https://www.eeoc.gov/special-report/diversity-high-
tech.

https://services.google.com/fh/files/misc/computer-science-learning-closing-the-gap-rural-small-town-brief.pdf
https://services.google.com/fh/files/misc/computer-science-learning-closing-the-gap-rural-small-town-brief.pdf
https://services.google.com/fh/files/misc/computer-science-learning-closing-the-gap-rural-small-town-brief.pdf
https://www.prnewswire.com/news-releases/horizon-media-study-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html
https://www.prnewswire.com/news-releases/horizon-media-study-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html
https://www.prnewswire.com/news-releases/horizon-media-study-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html
https://www.prnewswire.com/news-releases/horizon-media-study-reveals-americans-prioritize-stem-subjects-over-the-arts-science-is-cool-coding-is-new-literacy-300154137.html
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://www.kaporcenter.org/wp-content/uploads/2017/05/lpfi_path_not_found_report.pdf
https://www.kaporcenter.org/wp-content/uploads/2017/05/lpfi_path_not_found_report.pdf
https://www.kaporcenter.org/wp-content/uploads/2017/05/lpfi_path_not_found_report.pdf
https://www.bls.gov/emp/tables.htm
https://www.bls.gov/emp/tables.htm
https://www.eeoc.gov/special-report/diversity-high-tech
https://www.eeoc.gov/special-report/diversity-high-tech

California Department of Education Appendix | 159

California Computer
Science Standards: Appendix

Contents
I. Guide for Leadership .. 160

Strategies to Support Computer Science
Standards Implementation ..160
Supporting Computer Science through
Professional Learning ..161

II. Guide for Flexible Implementation 163
Flexible Implementation Models for
Computer Science Standards ..163
Integrating Computer Science ..163

III. Guide for Instructional Practices Alignment.................. 167
Instructional Practices Alignment Considerations167
Assessment ..168
Universal Access ...168

IV. Interdisciplinary Connections ..173
Practices ...173
Interdisciplinary Connections to
Standards by Grade Band ...178
Grade levels K–2 ...178
Grade levels 3–5 .. 190
Grade levels 6–8 .. 194
Grade levels 9–12 ...198

V. Career Technical Education (CTE) Connections 207
CTE Standards for Career Ready Practice207
Information and Communication Technologies Sector210
Other Sectors ... 220

VI. Connections to Postsecondary Education 227
California State University/University of California
Freshman Minimum Admission Requirements227
Advanced Placement (AP) .. 228
International Baccalaureate ...241

VII. Glossary .. 243
VIII. References .. 260

160 | Appendix California Department of Education

Guide for Leadership
Strategies to Support Computer Science
Standards Implementation

Educational leaders foster systemic change by clearly
communicating a strong, compelling vision regarding the necessity
of computer science education and its importance for developing
college and career readiness as well as lifelong learning. For
additional guidance regarding the need for computer science
implementation, refer to the “Why Computer Science?” section of
the introduction to the standards.

Consistent messaging from leadership is vital to ensure coherence
across an organization. This messaging is most effective when
communicated to multiple stakeholders including administrators,
teachers, paraprofessionals, parents, community members, and
students. Shared vision and common language builds coherence,
inspires stakeholders and promotes sustainable change.

While communication of a compelling vision is vital, it must
be accompanied by systems of support to build capacity of
administrators, educators, community members, and students. The
vision should be reflected in school board policies and resolutions,
and in Local Control and Accountability Plans (LCAP) within the
action and services portion of the annual update. Local education
agencies are encouraged to consider adopting board resolutions
supporting computer science, such as creating a computer
science advisory committee. Educational leaders must also
consider a sustained investment in resources to maintain vision
implementation over time. Local education agencies are urged

to consider their parcel tax and/or bonds to be submitted during
elections and add computer science as an addendum to their
district technology plan and/or district strategic plan.

The following strategies may be used to support standards
implementation:

 § Communication

	� Define a system-wide vision written in a language
accessible to teachers, curriculum leaders, community
members, school board members, students, parents, and
families

	� Communicate the vision to stakeholders including
multimedia methods (website, infographics, posters, etc.)

	� Conduct community meetings and parent nights to build
awareness for computer science education and provide
resources

	� Include student voices in messaging to stakeholders and
encourage students to support the vision

	� Survey educators and other stakeholders to assess needs
for professional learning and additional support

 § Building Capacity

	� Ensure stakeholders can define the vision and understand
their role in its implementation

	� Provide professional learning opportunities for teachers
and paraeducators in alignment to vision

	� Provide professional learning for administrators and
encourage them to learn alongside teachers

California Department of Education Appendix | 161

	� Facilitate student leadership opportunities to promote
students teaching students, cross-age tutoring, and
mentorships

	� Personalize job-embedded professional learning to
maximize effectiveness

 § Sustainability

	� Align computer science work to the vision, using common
language to foster coherence across the system

	� Encourage educators to engage in peer observations and
collaborative learning communities to share best practices

	� Foster collaboration across departments and grade levels
to promote interdisciplinary connections and greater
coherence within the system

	� Build partnerships between students and industry
professionals and/or organizations

	� Reflect upon professional learning and implementation to
guide continual improvement

Supporting Computer Science
through Professional Learning

Professional learning for educators and administrators builds
collective efficacy and directly impacts student achievement.
Educators who will be teaching computer science may or may not
have a computer science background or certification. Therefore,
care must be made to customize the professional learning
experience by differentiating activities and instruction based on
computer science experience or certification.

Professional learning should lower educator anxiety regarding
content knowledge by focusing on growth mindsets and
building a safe culture of risk-taking. Professional learning
experiences must always align to the context of educators’
content area, instructional goals, and courses taught. The choice
of programming languages or tools should follow, not dictate,
the learning goals that align to classroom instruction. Ideal
professional learning includes time for educators to experience
learning in a pedagogically sound, learner-centered environment
in which they have time to explore new concepts, followed by time
to collaborate with colleagues in planning ways to apply these
concepts in their own classroom. Peer observations, follow-up
coaching, and time for reflection further cements the learning,
builds capacity, and supports sustainable change.

Due to issues of equity within computer science education,
professional learning in computer science should address
instructional practices that promote inclusivity and provide
universal access to all students, particularly those from
underserved populations. Professional learning in computer
science should also address ways to increase access depending
on device availability. The standards were developed to be learned
within a variety of environments with differing levels of device
availability. In schools that do not offer a computing device for each
student, strategies may include students working collaboratively on
shared computing devices, rotating students through a computing
experience via a weekly schedule within their classroom, or
scheduling multiple classrooms across a campus to share a room
that contains multiple computing devices.

162 | Appendix California Department of Education

Policies to Promote Computer Science

Vision and systems of support must be accompanied by updates
to policy in order to achieve sustainable change. Recommended
policies to promote and support the standards include:

 § Define ‘computer science’ and formally adopt the standards
as local school board policy. Computer science instruction
should be guided by standards and align to an accurate
definition of computer science.

 § Allocate funding for relevant, rigorous professional
learning and course development support. Local education
agencies and schools need to dedicate funding for building
capacity of educators to teach computer science, including
development or purchase of course materials and technical
infrastructure.

 § Maintain awareness of, and support, certification pathways.
In addition to traditional certification pathways, incentives
and expedited, alternative pathways may be created to
address short- and long-term need for computer science
teachers.

 § Develop partnerships with higher education organizations.
Local education agencies and schools can benefit from
creating direct pathways for preservice teachers to enter
service in high need areas.

 § Create dedicated computer science positions at local
education agencies. Leadership positions devoted to
computer science education promote sustainable change
and build capacity.

 § Require all high schools to offer computer science. While
computer science is to be available for all grades K–12,
ensuring all high schools offer at least one discrete computer
science course will assist in creating momentum to foster
systemic change.

 § Allow computer science to count as a graduation
requirement. Computer science courses that count toward
a graduation requirement rather than as an elective result in
increased participation by students.

 § Allow computer science to count as an admissions
requirement for institutes of higher education. Computer
science courses that meet an admission requirement
for an institute of high education will result in increased
participation by students.

California Department of Education Appendix | 163

Guide for Flexible Implementation
The overarching goal of the standards is guidance that fosters
computer science instruction for all students. Implementation is
flexible and should be based on needs of local capacity and context.

Flexible Implementation Models for
Computer Science Standards

Opportunity for all could include, but is not limited to, one or more
of the following options. Beginning at the top row, the examples
move from basic exposure to broad and deep exposure at the
bottom row.

Elementary Level Middle School Level High School Level

Integrated into the
general education
classroom

Integrated into math,
science, and/or
other subjects

Integrated into math,
science, and/or
other subjects

Integrated into an
existing special
classroom (e.g.,
media arts,
computer lab,
makerspace)

Integrated into an
existing special
classroom (e.g.,
media arts,
computer lab,
makerspace)

Introductory and/
or independent
course(s)

Elementary Level Middle School Level High School Level

Independent special
class (push-in or
pull-out similar to
models sometimes
used for music, arts,
etc.)

Introductory and/
or independent
course(s)

A menu of course
options available
for all students,
including advanced
courses (e.g.,
honors, AP, IB)

Integrated for all
with additional
independent
enrichment course
via extended hours
options

Integrated for all
with additional
independent
enrichment course
elective options

Specialized courses
(e.g., game design,
cybersecurity,
networking, robotics)

For a detailed description of building course pathways, view the
source K–12 Computer Science Framework at https://k12cs.org/
curriculum-assessment-pathways/.

Integrating Computer Science

Particularly at grade levels kindergarten through five, computer
science education can be integrated into multiple subject classrooms
to move toward an interdisciplinary approach. Computer science fits
naturally into an interdisciplinary learning environment. Integration
of computing experiences into multiple subject classrooms has been
in existence for many years (Papert 1980). The standards contain
interdisciplinary connection examples in grades K–8. Consider the
following examples taken from the standards, each with multiple
interdisciplinary connections.

https://k12cs.org/curriculum-assessment-pathways/
https://k12cs.org/curriculum-assessment-pathways/

164 | Appendix California Department of Education

 § K-2.AP.16 For example, when given images placed in a
random order, students could give step-by-step commands
to direct a robot, or a student playing a robot, to navigate
to the images in the correct sequence. Examples of images
include storyboard cards from a familiar story (CA CCSS for
ELA/Literacy RL.K.2, RL.1.2, RL.2.2) and locations of the sun
at different times of the day (CA NGSS: 1-ESS1-1).

 § 3-5.DA.8 For example, students could create and administer
electronic surveys to their classmates. Possible topics could
include favorite books, family heritage, and after-school
activities. Students could then create digital displays of
the data they collected, such as column histogram charts
showing the percent of respondents in each grade who
selected a particular favorite book. Finally, students could
make quantitative statements supported by the data, like
which books are more appealing to specific ages of students.
As an extension, students could write an opinion piece
stating a claim and support it with evidence from the data
they collected (CA CCSS for Mathematics 3.MD.3, 4.MD.4,
5.MD.2) (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1).

 § 6-8.IC.24 For example, students could discuss the benefits
and dangers of the increased accessibility of information
available on the internet, and then compare this to the
advantages and disadvantages of the introduction of the
printing press in society (HSS.7.8.4).

Elementary and middle schools often have greater flexibility than
high schools in their options for integrating computer science for

all students. Options may include instructional units dedicated to
computer science within technology, career exploration, or media
arts classes, weekly computing classes offered as electives, or
integration of computer science into other content areas. These
courses could be taught by elementary education teachers with a
multiple subject credential, content area teachers (mathematics,
science, technology, music, art, or media arts), or dedicated
computer science teachers. While the implementation models
vary, local education agencies need to align computer science
education with the standards as covered in the curriculum
alignment considerations section of the appendix.

The interdisciplinary guide section of the appendix provides general
education, special classroom, and independent course educators
with guidance regarding interdisciplinary connections to encourage
integration and/or cross-departmental collaboration. Examples of
an integrated approach could include but are not limited to:

 § Science teachers using computer science practices to
analyze data in labs

 § Science teachers having students program simulations

 § Science and health teachers having students create
and modify computational models that represent the
transmission of infectious disease in order to predict
changes in infected, susceptible, and recovered populations

 § Math teachers creating computational artifacts with students
to illustrate graphing

 § Math teachers having students use computer algebra
systems to explore problems that are realistic, yet

California Department of Education Appendix | 165

computationally intensive and impractical to attempt using
traditional techniques

 § Art teachers bringing algorithms into a discussion of filters
for photographs

 § Art teachers having students write and modify software to
produce digital works of art that would be impractical to
create with traditional techniques

 § English teachers having students create algorithms to
analyze text when comparing characteristics of writing
samples from various authors

 § Physical education teachers having students collect
and analyze data related to physical activities using
computational tools and techniques

 § Social studies teachers having students produce digital
map sequences, computationally controlled to determine
animation speeds, to illustrate changes in populations and
related social issues over time

 § English language development and world languages teachers
having students collect and analyze data on the global
impact of biliteracy

Discrete Computer Science

Computer science can be taught as a discrete, independent
course. For example, at the elementary level, the course can
exist as a weekly push-in or pull-out program from a specialized
computer science educator. In middle school, computer
science can be taught as a semester-long or yearlong course
for a particular grade level or for all levels. In high school,

computer science can be taught as a standalone course—as an
introductory course, an advanced placement course, and/or a
specialized course.

The danger of this model is that standalone courses are often
offered as electives, preventing access for those students who
do not opt in to the courses. Even when using a standalone,
independent model, educators are encouraged to seek out
interdisciplinary connections and collaborate with colleagues in
other departments to increase relevance for students. Computer
science education can also be provided by enhancing pre-existing
technology education credits and courses.

The core K–12 standards are designed for all students, even
those in grade levels nine through twelve. While the specialty
standards can aid the development of elective courses, local
education agencies are encouraged to begin by offering at least
one computer science course per high school. As computer science
is implemented in grade levels kindergarten through eight, the
need for high schools to increase their rigor and expand computer
science offerings will grow. High schools may build their computer
science offerings by including specialty courses that can provide
college entrance credit, career and technical preparation, or
advanced placement courses. While these courses may be more
advanced or specialized than the standards call for, the K–12
progression provides a conceptual foundation for their increasingly
complex content.

Local education agencies may consider whether to categorize
computer science within an academic pathway, a Career Technical

166 | Appendix California Department of Education

Education (CTE) pathway, or both. It is appropriate to house
computer science in both CTE and academic pathways. The early,
foundational courses in a CTE program of study can be dual-
coded as part of the CTE pathway as well as a math, science, or
technology credit.

California Department of Education Appendix | 167

Guide for Instructional
Practices Alignment
Instructional Practices Alignment Considerations

In accordance to the standards, computer science instruction and
instructional practices should align to the five concepts and seven
practices of computer science, grounded in solid pedagogical
philosophies of student-led learning environments. The five
concepts are:

 § Computing Systems

 § Networks and the Internet

 § Data and Analysis

 § Algorithms and Programming

 § Impacts of Computing

And the seven practices include:

 § Fostering an Inclusive Computing Culture

 § Collaborating Around Computing

 § Recognizing and Defining Computational Problems

 § Developing and Using Abstractions

 § Creating Computational Artifacts

 § Testing and Refining Computational Artifacts

 § Communicating About Computing

A comprehensive computer science education requires inclusion of
each of the concepts and practices, as defined in the Introduction.
Computer science is more than coding (programming). Leaders

and educators must ensure that the computer science courses and
corresponding instructional resources offered in their local education
agencies reflect the breadth of computer science areas via the five
concepts, and also provides the opportunity for students to actively
engage with the content via the seven practices.

The concepts and practices are to be integrated into instruction
simultaneously in order to provide relevant, meaningful learning
experiences for students. Computer science instruction should
allow students to construct content knowledge through active,
exploratory activities that provide opportunities to solve problems,
create, collaborate, and communicate. Educators are urged to lead
with learning, never with tools (programming tools, equipment, or
computing languages). The five concepts should drive instructional
planning, accompanied by the seven practices as a means of
engaging students with the content. Tools are to be chosen not as
a focus, but as a means of supporting students in mastering the
concepts while engaging in practices.

Instructional practices must also take into consideration the
progressive grade-bands of the framework. The standards are
designed to be developmentally appropriate, building in complexity
per grade-band. Careful attention to these progressions will ensure
a coherent computer science education for students.

Instructional practices should reflect countless socially relevant
and culturally situated contexts. Students should be engaged
in learning experiences that promote social connections across
cultures, celebrate diversity, and allow opportunities to address
relevant community issues.

168 | Appendix California Department of Education

Assessment

Assessment of computer science in classrooms should be used
to drive instructional planning and measure performance toward
mastery of the standards. Traditional assessments that seek
one solution to a problem are not recommended. The following
assessment models more accurately reflect the computer science
field, motivate students in meaningful learning experiences, and
more accurately assess students’ depth of understanding.

Authentic projects allow educators to gauge not only students’
content knowledge, but their ability to apply this knowledge to
real-world contexts. Throughout a long-term project, educators
may use predetermined timelines as check-ins to be used as
formative assessment. The assessment data collected should be
used to support students according to their specific learning needs.
Rubrics are recommended to ensure that students and educators
have clear expectations of the final goals of the project. This also
promotes student metacognition, as learners may monitor their
progress according to the rubric.

Portfolios developed over time provide students and educators the
opportunity to validate the process of learning computer science,
and to celebrate growth over time. As students create portfolios,
they build confidence and begin to take ownership of their learning.

Educators may assess computer science concepts and skills via
performance tasks. These assessments may evaluate multiple
concepts and practices simultaneously. As performance tasks
contain more than a single method and/or answer to a question,
they promote student creativity, allow students to demonstrate

problem solving skills, and provide educators with valuable insight
into student understanding.

Assessment in computer science should contain breadth
across concepts and integrate practices, according to the
K–12 Computer Science Framework at https://k12cs.org/. For
example, teachers can assess students’ ability to analyze the
advantages and disadvantages of different encryption algorithms.
This evaluation addresses the idea of algorithmic performance
(Algorithms and Programming) as well as cybersecurity (Networks
and the Internet).

When programming is the focus, students should be assessed
on not only their ability to write the program but also their ability
to communicate the product’s significance and development
process (Communicating About Computing). This also includes the
collaboration among members (Collaborating Around Computing).
For instance, students can submit planning documents used to
produce the program, do a presentation on the impact that their
program will have on a target audience, and write a reflection on
how the team worked to put the program together.

Universal Access

The standards are designed to be accessible to all, regardless
of race, ethnicity, gender, socioeconomic status, language,
religion, sexual orientation, cultural affiliation, or special needs.
In addition to developing a schedule that ensures each and
every student receives access to core concepts and practices,
computer science learning experiences must be designed to be
inclusive of all learners beginning with instructional planning.

https://k12cs.org/

California Department of Education Appendix | 169

The Universal Design for Learning (UDL) framework provides
a proactive, research based framework to guide educators in
planning instruction that meets the varying needs of a diverse
group of students (visit the UDL website at https://medium.com/
udl-center, and the Center for Applied Special Technology (CAST)
website at https://www.cast.org).

UDL principles for instruction include: Principle I) Provide multiple
means of engagement to tap individual learners’ interests,
challenge them appropriately, and motivate them to learn; Principle

II) Provide multiple means of representation to give students
various ways of acquiring, processing, and integrating information
and knowledge; and Principle III) Provide multiple means of action
and expression to provide students with options for navigating and
demonstrating learning (CAST 2019).

The following tables, developed by the Creative Technology
Research Lab at the University of Illinois, demonstrate examples of
UDL integration in computer science instruction (Israel, Lash, and
Jeong 2017).

Multiple Means of Representation Multiple Means of Action and Expression Multiple Means of Engagement

Provide options for perception:

 § Model computing using physical
representations and drawings

 § Give access to modeled code while
students work independently

 § Provide access to video tutorials of
computing tasks

 § Select coding apps and websites that
allow the students to adjust visual settings
(such as font size and contrast) and that
are compatible with screen readers

Provide options for physical action:

 § Provide teacher’s codes as templates

 § Include unplugged activities that
show physical relationship of abstract
computing concepts

 § Use assistive technology including larger
and smaller mice, and touch-screen
devices

 § Select coding apps and websites that
allow coding with keyboard shortcuts, in
addition to dragging-and-dropping with a
mouse

Provide options for recruiting interest:

 § Give students choices like choosing a
project, software, or topic

 § Allow students to make projects relevant
to culture and age, and addressing
societal needs

 § Minimize possible common “pitfalls” for
both computing and content

 § Allow for differences in the pacing and
length of work sessions

 § Provide options to increase or decrease
sensory stimulation, like listening to music
with headphones or noise-cancelling
headphones)

https://medium.com/udl-center
https://medium.com/udl-center
https://www.cast.org

170 | Appendix California Department of Education

Multiple Means of Representation Multiple Means of Action and Expression Multiple Means of Engagement

 § Allow for differences in pacing and the
length of work sessions

 § Allow students to address standards as
part of larger projects

 § Allow computer programming assignments
that facilitate artistic expression

Provide options for perception:

 § Model computing using physical
representations and drawings

 § Give access to modeled code while
students work independently

 § Provide access to video tutorials of
computing tasks

 § Select coding apps and websites that
allow the students to adjust visual settings
(such as font size and contrast) and that
are compatible with screen readers

Provide options for physical action:

 § Provide teacher’s codes as templates

 § Include unplugged activities that
show physical relationship of abstract
computing concepts

 § Use assistive technology including larger
and smaller mice, and touch-screen
devices

 § Select coding apps and websites that
allow coding with keyboard shortcuts, in
addition to dragging-and-dropping with a
mouse

Provide options for recruiting interest:

 § Give students choices like choosing a
project, software, or topic

 § Allow students to make projects relevant
to culture and age, and addressing
societal needs

 § Minimize possible common “pitfalls” for
both computing and content

 § Allow for differences in the pacing and
length of work sessions

 § Provide options to increase or decrease
sensory stimulation, like listening to music
with headphones or noise-cancelling
headphones)

 § Allow for differences in pacing and the
length of work sessions

 § Allow students to address standards as
part of larger projects

California Department of Education Appendix | 171

Multiple Means of Representation Multiple Means of Action and Expression Multiple Means of Engagement

 § Allow computer programming assignments
that facilitate artistic expression

Provide options for language mathematical
expressions, and symbols:

 § Teach and review content specific
vocabulary

 § Teach and review computing vocabulary
like code, animations, computing, and
algorithms

 § Post anchor charts and provide reference
sheets with images of blocks or common
syntax when using text

Provide options for expression and
communication:

 § Give options of unplugged activities and
computing software and materials

 § Give opportunities to practice computing
skills and content through projects that
build prior lessons

 § Provide sentence starters or checklists
for communicating to collaborate, give
feedback, and explain work

 § Create physical manipulatives of
commands, blocks or lines of code

 § Provide options that include starter code

Provide options for sustaining effort and
persistence:

 § Remind students of computing and
content goals

 § Provide support or extensions for students
to keep engaged

 § Teach and encourage peer collaboration
by sharing products

 § Utilize pair programming and group work
with clearly defined roles

 § Discuss the integral role of perseverance
and problem solving in computer science,
and recognize students for demonstrating
perseverance and problem solving in the
classroom

Provide options for comprehension:

 § Activate background knowledge by making
computing tasks interesting and culturally
relevant

 § State lesson content and computing goals

 § Encourage students to ask questions as
comprehension checkpoints

Provide options for executive functions:

 § Guide students to set goals for long-term
projects

 § Record students’ progress; have
planned checkpoints during lessons for
understanding and progress for computing
skills and content

Provide options for self-regulation:

 § Communicate clear expectations for
computing tasks, collaboration, and
seeking help

 § Develop ways for students to self-assess
and reflect on their own projects and
those of others

172 | Appendix California Department of Education

Multiple Means of Representation Multiple Means of Action and Expression Multiple Means of Engagement

 § Use relevant analogies and make cross-
curricular connections explicit, like
comparing iterative product development
to the writing process

 § Provide graphic organizers for students to
“translate” programs into pseudocode

 § Provide exemplars of completed products

 § Embed prompts to stop and plan, test, or
debug throughout a lesson or project

 § Provide graphic organizers to facilitate
planning, goal-setting, and debugging

 § Provide explicit instruction on skills such
as asking for help, providing feedback,
and using problem-solving techniques

 § Demonstrate debugging with think-alouds

 § Use assessment rubrics that evaluate both
content and process

 § Break up coding activities with
opportunities for reflection, such as turn-
and-talks or written questions

 § Acknowledge difficulty and frustration;
model different strategies for dealing with
frustration appropriately

Appendix | 173 California Department of Education

Interdisciplinary Connections
Life is not divided into subject areas, and computer science is no
different. As a field, computer science spans multiple disciplines.

The following resources provide guidance for interdisciplinary
connections between the computer science standards and other
curriculum standards adopted by the California State Board of
Education. CTE connections are listed in section V of the appendix.

The interdisciplinary connections are meant to be general
suggestions as to relationships between content areas and do
not constitute guidance for synonymous instruction between
disciplines.

Practices

Broad interdisciplinary connections from kindergarten to grade
twelve, followed by specific cross-disciplinary references by grade
band, are provided below.

Computer Science Practice Related Interdisciplinary Connections

1. Fostering an Inclusive Computing
Culture

Visual and Performing Arts
Historical and Cultural Context (Strand 3)

Next Generation Science Standards
Using Mathematics and Computational Thinking
(Science and Engineering Practice 5)

2. Collaborating Around Computing English Language Arts
College and Career Readiness Anchor Standards for Speaking and Listening
Comprehension and Collaboration
(Standards 1, 2, 3)

English Language Development
Part I: Interacting in Meaningful Ways
Communicative Mode: Collaborative
(Standards 1–4)

Next Generation Science Standards
Using Mathematics and Computational Thinking
(Science and Engineering Practice 5)

174 | Appendix California Department of Education

Computer Science Practice Related Interdisciplinary Connections

3. Recognizing and Defining
Computational Problems

Next Generation Science Standards
Asking Questions (for science) and defining problems (for engineering)
(Science and Engineering Practice 1)
Using Mathematics and Computational Thinking
(Science and Engineering Practice 5)

Mathematics
Make Sense of Problems and Persevere in Solving Them
(Standards of Mathematical Practice 1)

Health Education Content Standards
Decision Making
(Standard 5)

4. Developing and Using Abstractions Next Generation Science Standards
Developing and Using Models
(Science and Engineering Practice 2)

Mathematics
Reason Abstractly and Quantitatively
(Standards of Mathematical Practice 2)
Model with Mathematics
(Standards of Mathematical Practice 4)
Look For and Make Use of Structure
(Standards of Mathematical Practice 7)
Look For and Express Regularity in Repeated Reasoning
(Standards of Mathematical Practice 8)

5. Creating Computational Artifacts Visual and Performing Arts
Creative Expression (Strand 2)

California Department of Education Appendix | 175

Computer Science Practice Related Interdisciplinary Connections

English Language Arts
College and Career Readiness Anchor Standards for Writing
Text Types and Purposes
(Standards 1, 2, 3)
Production and Distribution of Writing
(Standards 4, 5, 6)

Next Generation Science Standards
Constructing Explanations (for science) and Designing Solutions (for engineering)
(Science and Engineering Practice 6)

6. Testing and Refining Computational
Artifacts

Next Generation Science Standards
Planning and Carrying Out Investigations
(Science and Engineering Practice 3)
Developing and Using Models
(Science and Engineering Practice 2)

7. Communicating About Computing California History–Social Studies Framework
Argumentative Writing
(Concept and Disciplinary Practice)

Model School Library Standards
Students Use Information
(Standard 3)

Next Generation Science Standards
Analyzing and Interpreting Data
(Science and Engineering Practice 4)
Engaging in Argument from Evidence
(Science and Engineering Practice 7)
Obtaining, Evaluating, and Communicating Information

176 | Appendix California Department of Education

Computer Science Practice Related Interdisciplinary Connections

(Science and Engineering Practice 8)

Mathematics
Construct Viable Arguments and Critique the Reasoning of Others
(Standards of Mathematical Practice 3)
Attend to Precision
(Standards of Mathematical Practice 6)

English Language Arts
College and Career Readiness Anchor Standards for Writing
Production and Distribution of Writing
(Standards 4, 5, 6)
College and Career Readiness Anchor Standards for Speaking and Listening
Comprehension and Collaboration
(Standards 1, 2, 3)
College and Career Readiness Anchor Standards for Speaking and Listening
Presentation of Knowledge and Ideas
(Standards 4, 5, 6)
College and Career Readiness Anchor Standards for Language
Vocabulary Acquisition and Use
(Standards 4, 6)

English Language Development
Part I: Interacting in Meaningful Ways
Communicative Mode: Productive
(Standards 9-12)

Health Education Content Standards
Interpersonal Communication
(Standard 4)

California Department of Education Appendix | 177

The Computer Science (CS) practices intersect with the practices
described in the Next Generation Science Standards, which
also include engineering, and the Common Core Standards for
Mathematical Practice (see figure below).

CS and Math Intersection CS and Science/Engineering Intersection CS, Math, and Science/Engineering Intersection

Develop and use abstractions
M2. Reason abstractly and
quantitatively
M7. Look for and make use of
structure
M8. Look for and express regularity
in repeated reasoning
CS4. Developing and Using
Abstractions

Use tools when collaborating
M5. Use appropriate tools
strategically
CS2. Collaborating Around
Computing

Communicate precisely
M6. Attend to precision CS7.
Communicating About Computing

Communicate with data
S4. Analyze and interpret data
CS7. Communicating About Computing

Create artifacts
S3. Plan and carry out investigations
S6. Construct explanations and design
solutions
CS4. Developing and Using Abstractions
CS5. Creating Computational Artifacts
CS6. Testing and Refining Computational
Artifacts

Model
S2. Develop and use models
M4. Model with mathematics
CS4. Developing and Using Abstractions CS6. Testing and
Refining Computational Artifacts

Use computational thinking
S5. Use mathematics and computational thinking CS3.
Recognizing and Defining Computational Problems
CS4. Developing and Using Abstractions CS5. Creating
Computational Artifacts

Define problems
S1. Ask questions and define problems M1. Make sense
of problems and persevere in solving them
CS3. Recognizing and Defining Computational Problems

Communicate rationale
S7. Engage in argument from evidence S8. Obtain,
evaluate, and communicate information M3. Construct
viable arguments and critique the reasoning of others
CS7. Communicating About Computing

Adapted from K–12 Computer Science Framework 2016, p. 72.
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf

Sci/
EngMath

CS

https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf

178 | Appendix California Department of Education

Communicating about Computing is a key practice that is
reinforced throughout the CS standards by asking students to
describe, explain, and justify program design decisions, computing
phenomena, and the impacts of computing on society. These
CS standards support numerous ELA speaking, listening, and
writing standards as well as ELD standards, including synthesizing
information from multiple sources, writing discipline-specific
arguments, developing facility with technical vocabulary, and
understanding diverse perspectives.

Interdisciplinary Connections to Standards by Grade Band

Note: Cross-disciplinary references from the interdisciplinary
examples listed in the standards document may or may not be
included on this table, as the connections listed below are meant
to be general connections rather than aligned to specific examples.

Grade levels K–2

Key: Asterisk symbol (*) = Not found.

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

K-2.CS.1 W.K.6,
W.1.6,
W.2.6,
SL.K.5,
SL.1.5,
SL.2.5

P.I.K.2, P.I.K.9,
P.I.K.10,
P.I.K.12, P.I.1.2,
P.I.1.9, P.I.1.10,
P.I.1.12, P.I.2.2,
P.I.2.9, P.I.2.10,
P.I.2.12

* * * * K.1.3.G,
K.1.4.A,
K.3.3,
K.4.1,
1.1.3.A,
1.1.4,
1.3.3,
1.4.1,
2.1.3.B,
2.1.3.D,
2.1.4,
2.4.3.B

* *

California Department of Education Appendix | 179

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

K-2.CS.2 SL.K.4,
SL.K.5,
SL.K.6,
SL.1.4,
SL.1.5,
SL.1.6,
SL.2.4,
SL.2.5,
SL.2.6

P.I.K.1, P.I.K.3,
P.I.K.9, P.I.K.11,
PI.K.12,
P.II.K.1, P.II.K.2,
P.II.K.3, P.II.K.4,
P.II.K.5, P.I.1.3,
P.I.1.9, P.I.1.11,
P.I.1.12,
P.II.1.1, P.II.1.2,
P.II.1.3, P.II.1.4,
P.II.1.5, P.II.1.6,
P.II.1.7, P.I.2.1,
P.I.2.3, P.I.2.4,
P.I.2.9, P.I.2.11,
P.I.2.12,
P.II.2.1; P.II.2.2,
P.II.2.3, P.II.2.4,
P.II.2.5, P.II.2.6,
P.II.2.7

* * * K-2-ETS1-2 1.1.3.C,
2.3.3.B,
2.3.3.D

* *

180 | Appendix California Department of Education

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

K-2.CS.3 SL.K.4,
SL.K.5,
SL.K.6,
SL.1.4,
SL.1.5,
SL.1.6,
SL.2.4,
SL.2.5,
SL.2.6

P.I.K.1, P.I.K.3,
P.I.K.9, P.I.K.11,
PI.K.12,
P.II.K.1, P.II.K.2,
P.II.K.3, P.II.K.4,
P.II.K.5, P.I.1.3,
P.I.1.9, P.I.1.11,
P.I.1.12,
P.II.1.1, P.II.1.2,
P.II.1.3, P.II.1.4,
P.II.1.5, P.II.1.6,
P.II.1.7, P.I.2.1,
P.I.2.3, P.I.2.4,
P.I.2.9, P.I.2.11,
P.I.2.12,
P.II.2.1, P.II.2.2,
P.II.2.3, P.II.2.4,
P.II.2.5, P.II.2.6,
P.II.2.7

* * * * * * *

California Department of Education Appendix | 181

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

K-2.NI.4 SL.K.4,
SL.K.5,
SL.K.6,
SL.1.4,
SL.1.5,
SL.1.6,
SL.2.4,
SL.2.5,
SL.2.6

P.I.K.1, P.I.K.3,
P.I.K.9, P.I.K.11,
PI.K.12,
P.II.K.1, P.II.K.2,
P.II.K.3, P.II.K.4,
P.II.K.5, P.I.1.3,
P.I.1.9, P.I.1.11,
P.I.1.12,
P.II.1.1, P.II.1.2,
P.II.1.3, P.II.1.4,
P.II.1.5, P.II.1.6,
P.II.1.7, P.I.2.1,
P.I.2.3, P.I.2.4,
P.I.2.9, P.I.2.11,
P.I.2.12,
P.II.2.1, P.II.2.2,
P.II.2.3, P.II.2.4,
P.II.2.5, P.II.2.6,
P.II.2.7

* * * 1-PS-4-4,
K-2-ETS1-2

1.3.1.B * *

182 | Appendix California Department of Education

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

K-2.NI.5 SL.K.4,
SL.K.5,
SL.K.6,
SL.1.4,
SL.1.5,
SL.1.6,
SL.2.4,
SL.2.5,
SL.2.6

P.I.K.1, P.I.K.3,
P.I.K.9, P.I.K.11,
PI.K.12,
P.II.K.1, P.II.K.2,
P.II.K.3, P.II.K.4,
P.II.K.5, P.I.1.3,
P.I.1.9, P.I.1.11,
P.I.1.12,
P.II.1.1, P.II.1.2,
P.II.1.3, P.II.1.4,
P.II.1.5, P.II.1.6,
P.II.1.7, P.I.2.1,
P.I.2.3, P.I.2.4,
P.I.2.9, P.I.2.11,
P.I.2.12,
P.II.2.1, P.II.2.2,
P.II.2.3, P.II.2.4,
P.II.2.5, P.II.2.6,
P.II.2.7

* * * * K.3.1.A,
2.3.1.E

* *

K-2.NI.6 * * * * Music.K.1.1 1-PS-4-4 * * *

California Department of Education Appendix | 183

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

K-2.DA.7 W.K.5,
W.K.6,
W.1.5,
W.1.6,
W.2.5,
W.2.6

PI.K.2, PI.K.10,
PI.K.12,
PII.K.1, PII.K.2,
PII.K.3, PII.K.4,
PII.K.5, PII.K.6,
PI.1.2, PI.1.10,
PI.1.12,
PII.1.1, PII.1.2,
PII.1.3, PII.1.4,
PII.1.5, PII.1.6,
PII.1.7, PI.2.2,
PI.2.4, PI.2.10,
PI.2.12,
PII.2.1, PII.2.3,
PII.2.4, PII.2.5,
PII.2.6, PII.2.7

* * * * * * *

K-2.DA.8 * * * K.MD.3,
1.MD.4,

2.MD.4

2.MD.9

2.MD.10

* K-2-
ETS1-3,
K-PS2-2,
K-LS1-1,
K-ESS2-1,
1-ESS1-1,
1-ESS1-2,
2-PS1-2

* * *

184 | Appendix California Department of Education

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

K-2.DA.9 * PI.K.9,
PI.K.12b,
PII.K.2, PII.K.5,
PII.K.6, PI.1.9,
PI.1.12b,
PII.1.2, PII.1.5,
PII.1.6, PI.2.9,
PI.2.12b,
PII.2.2, PII.2.5,
PII.2.6

* K.MD.3,

K.G.4,
1.MD.4,
2.MD.10

* 2-PS1-1,
2-PS1-2,
K-PS3-1,
K-ESS2-1,
K-ESS3-2,
1-ESS1-1,
1-ESS1-2

* * *

K-2.AP.10 W.K.3,
W.1.3,
W.2.3

PI.K.10,
PII.K.1, PII.K.2,
PII.K.6,
PI.1.10,
PII.1.1, PII.1.2,
PII.1.6, PII.1.7,
PI.2.10,
PII.2.1, PII.2.2,
II.2.6, PII.2.7

K.5 * Dance
1.2.3,
Dance
1.2.5,
Dance 2.2.3

* * 2.1.18,
2.1.19

*

K-2.AP.11 * * * * * * * * *

California Department of Education Appendix | 185

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

K-2.AP.12 * * * * Dance
1.2.3,
Dance
1.2.5,
Dance 2.2.3

* * 2.1.18,
2.1.19

*

K-2.AP.13 * * * K.G.5, 1.G.2,
2.NBT.9

* 2-PS1-3 * * 1.6.1.P

K-2.AP.14 W.K.3,
W.1.3,
W.2.3

PI.K.10,
PII.K.1, PII.K.2,
PII.K.6,
PI.1.10,
PII.1.1, PII.1.2,
PII.1.6, PII.1.7,
PI.2.10,
PII.2.1, PII.2.2,
PII.2.6, PII.2.7

* * * * * * K.7.2.N,
K.6.1.M,
1.6.1.P,
2.7.2.N

K-2.AP.15 * PI.K.9, PI.1.9,
PI.2.9, PI.K.10,
PI.1.10,
PI.2.10

* * * * 2.3.1.B * *

K-2.AP.16 * * * * * * * * *

186 | Appendix California Department of Education

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

K-2.AP.17 SL.K.4,
SL.K.5,
SL.K.6,
SL.1.4,
SL.1.5,
SL.1.6,
SL.2.4,
SL.2.5,
SL.2.6

P.I.K.1, P.I.K.3,
P.I.K.9, P.I.K.11,
PI.K.12,
P.II.K.1, P.II.K.2,
P.II.K.3, P.II.K.4,
P.II.K.5, P.I.1.3,
P.I.1.9, P.I.1.11,
P.I.1.12,
P.II.1.1, P.II.1.2,
P.II.1.3, P.II.1.4,
P.II.1.5, P.II.1.6,
P.II.1.7, P.I.2.1,
P.I.2.3, P.I.2.4,
P.I.2.9, P.I.2.11,
P.I.2.12,
P.II.2.1, P.II.2.2,
P.II.2.3, P.II.2.4,
P.II.2.5, P.II.2.6,
P.II.2.7

* * * * * * *

California Department of Education Appendix | 187

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

K-2.IC.18 SL.K.4,
SL.K.5,
SL.K.6,
SL.1.4,
SL.1.5,
SL.1.6,
SL.2.4,
SL.2.5,
SL.2.6

P.I.K.1, P.I.K.3,
P.I.K.9, P.I.K.11,
PI.K.12,
P.II.K.1, P.II.K.2,
P.II.K.3, P.II.K.4,
P.II.K.5, P.I.1.3,
P.I.1.9, P.I.1.11,
P.I.1.12,
P.II.1.1, P.II.1.2,
P.II.1.3, P.II.1.4,
P.II.1.5, P.II.1.6,
P.II.1.7, P.I.2.1,
P.I.2.3, P.I.2.4,
P.I.2.9, P.I.2.11,
P.I.2.12,
P.II.2.1, P.II.2.2,
P.II.2.3, P.II.2.4,
P.II.2.5, P.II.2.6,
P.II.2.7

K.6.3, 1.4,
2.1, 2.4

* * * * * *

188 | Appendix California Department of Education

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

K-2.IC.19 W.K.5,
W.K.5,
W.1.5,
W.1.6,
W.2.5,
W.2.6

PI.K.2, PI.K.10,
PI.K.12,
PII.K.1, PII.K.2,
PII.K.3, PII.K.4,
PII.K.5, PII.K.6,
PI.1.2, PI.1.10,
PI.1.12,
PII.1.1, PII.1.2,
PII.1.3, PII.1.4,
II.1.5, PII.1.6,
PII.1.7, PI.2.2,
PI.2.4, PI.2.10,
PI.2.12,
PII.2.1, PII.2.3,
PII.2.4, PII.2.5,
PII.2.6, PII.2.7

K.1.1,
1.1.2

* * * 2.3.1.A 2.5.2,
2.5.3,
2.5.4

K.1.1.S,
K.1.6.S,
K.1.7.S,
K.4.2.M,
K.7.2.M,
K.8.1.M,
1.1.6.S,
1.8.1.S,
2.1.10.M

California Department of Education Appendix | 189

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

K-2.IC.20 SL.K.4,
SL.K.5,
SL.K.6,
SL.1.4,
SL.1.5,
SL.1.6,
SL.2.4,
SL.2.5,
SL.2.6

P.I.K.1, P.I.K.3,
P.I.K.9, P.I.K.11,
PI.K.12,
P.II.K.1, P.II.K.2,
P.II.K.3, P.II.K.4,
P.II.K.5, P.I.1.3,
P.I.1.9, P.I.1.11,
P.I.1.12,
P.II.1.1, P.II.1.2,
P.II.1.3, P.II.1.4,
P.II.1.5, P.II.1.6,
P.II.1.7, P.I.2.1,
P.I.2.3, P.I.2.4,
P.I.2.9, P.I.2.11,
P.I.2.12,
P.II.2.1, P.II.2.2,
P.II.2.3, P.II.2.4,
P.II.2.5, P.II.2.6,
P.II.2.7

* * * * 1.1.3.F,
2.3.1.E

* *

Note: Cross-disciplinary references from the interdisciplinary examples listed in the standards document may or may not be included on this
table, as the connections listed above are meant to be general connections rather than aligned to specific examples.

190 | Appendix California Department of Education

Grade levels 3–5

Key: Asterisk symbol (*) = Not found.

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

3-5.CS.1 SL.3.4,
SL.4.4,
SL.5.4

PI.3.9,
PI.3.12,
PI.4.9,
PI.4.12,
PI.5.9,
PI.5.12

* * * * * * *

3-5.CS.2 * * * * * * * * *

3-5.CS.3 * * * * * * * * *

3-5.NI.4 * * * * * * * * *

3-5.NI.5 SL.3.4,
SL.4.4,
SL.5.4

PI.3.9,
PI.3.12,
PI.4.9,
PI.4.12,
PI.5.9,
PI.5.12

* * * * 3.3.1.B,
4.3.1.B,
5.3.1.C,
5.3.1.E,
5.3.1.F

* 3.1.4.M,
4.1.1.S

3-5.NI.6 * * * * * 4-PS4-3 * * *

California Department of Education Appendix | 191

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

3-5.DA.7 W.3.6,
W.4.6,
W.5.6,
SL.3.4,
SL.4.4,
SL.5.4

PI.3.9,
PI.3.12,
PI.4.9,
PI.4.12,
PI.5.9,
PI.5.12

* * * * * * *

3-5.DA.8 * * * 3.MD.3,
4.MD.4,
5.MD.2

* 3-PS2-2,
3-LS3-1,
3-LS4-1,
3-ESS2-1,
4-ESS2-1,
4-ESS2-2,
5-PS1-2,
5-ESS1-2,
5-ESS2-2

* * *

3-5.DA.9 * * * 3.MD.3,
4.MD.4,
5.MD.2

* 3-PS2-2,
3-LS3-1,
3-LS4-1,
3-ESS2-1,
4-ESS2-1,
4-ESS2-2,
5-PS1-2,
5-ESS1-2,
5-ESS2-2

* * *

192 | Appendix California Department of Education

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

3-5.AP.10 * * * * * * * * *

3-5.AP.11 * * * * * * * * *

3-5.AP.12 * * * * * * * * *

3-5.AP.13 * * * * * * * * *

3-5.AP.14 * * * * * * * * *

3-5.AP.15 * * * * * 3-5-ETS1-1,
3-5-ETS1-2

* * *

3-5.AP.16 * * * * * * 3.1.4.A,
5.3.1.A,
5.3.1.B,
5.3.1.C

* *

3-5.AP.17 * * * * * 3-5-ETS1-3 * * *

3-5.AP.18 * * * * Theatre
5.2.3,
Theatre
5.5.2

* * 3.5.6,
4.5.6,
5.5.5

*

3-5.AP.19 SL.3.4,
SL.4.4,
SL.5.4

PI.3.9,
PI.3.12,
PI.4.9,
PI.4.12,
PI.5.9,
PI.5.12

* * * * * * *

California Department of Education Appendix | 193

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

3-5.IC.20 SL.3.1,
SL.4.1,
SL.5.1

PI.3.1, PI.3.5,
PI.4.1, PI.4.5,
PI.5.1, PI.5.5

* * * * * * *

3-5.IC.21 W.3.7,
W.4.7,
W.5.7

* * * * 3-5-ETS1-1,
3-5-ETS1-2,
3-5-ETS1-3

* * *

3-5.IC.22 * * * * * * * * *

3-5.IC.23 * * * * * * 3.1.4.A,
5.3.1.B,
5.3.1.E

* *

Note: Cross-disciplinary references from the interdisciplinary examples listed in the standards document may or may not be included on this
table, as the connections listed above are meant to be general connections rather than aligned to specific examples.

194 | Appendix California Department of Education

Grade levels 6–8

Key: Asterisk symbol (*) = Not found.

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

6-8.CS.1 * * * 7.SP.8 * MS-ETS1-1 * * 6.7.3.M

6-8.CS.2 * * * 8.F.5 * MS-ETS1-1,
MS-ETS1-3

* * *

6-8.CS.3 * * * * * MS-ETS1-4 * * *

6-8.NI.4 * * * * * * * * *

6-8.NI.5 * * * * * * 6.3.1.A,
6.3.1.B,
6.3.1.D

* *

6-8.NI.6 * * * * * * * * *

6-8.DA.7 * * * 6.RP.3, 6.EE.9,
6.NS.1,
6.SP.4, 8.EE.5,
8.F.2, 8.F.4,
8.F.5, 8.SP.1

* MS-ETS1-3 * * *

6-8.DA.8 * * * 7.SP.3, 8.SP.1,
8.SP.4, 7.SP.4,
8.F.4, 8.F.5,
8.SP.1, 6.SP.5,
7.RP.2, 7.SP.2,
7.SP.6

* MS-PS1-2,
MS-LS4-3,
MS-ESS1-3,
MS-ESS2-3,
MS-ESS2-5,
MS-ESS3-2,
MS-ETS1-3

* * *

California Department of Education Appendix | 195

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

6-8.DA.9 * * * 7EE.4, 7.SP.7,
8.SP.1, 8.SP.3,
8.SP.4, 8.G.9

* MS-ETS1-4,
MS-PS1-2,
MS-ETS1-1,
MS-ETS1-2,
MS-ETS1-3

* * *

6-8.AP.10 * * 7.6.7,
8.2.6,
8.5.3,
8.6.5

* * MS-ETS1-4 * * *

6-8.AP.11 * * * 6.EE.2,
6.EE.6,
7.EE.4,
8.EE.8, 8.F.1

* * * * *

6-8.AP.12 * * * 7.SP.8, 8.F.4,
8.SP.4,

* MS-ETS1-4,
MS-PS1-6

* * *

6-8.AP.13 * * 7.6.4,
7.8.5, 7.9,
8.2.7,
8.3.6,

6.EE.6, 7.G.2,
8.EE.8,

* MS-ETS1-1,
MS-ETS1-2

* * *

6-8.AP.14 * * * 7.EE.4 * * * * *

6-8.AP.15 SL.6.1,
SL.7.1,
SL.8.1

PI.6.1, PI.6.5,
PI.7.1, PI.7.5,
PI.8.1, PI.8.5

* * * MS-ETS1-1,
MS-ETS1-4

* * *

196 | Appendix California Department of Education

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

6-8.AP.16 RI.6.7, W.6.8,
W.7.8, W.8.8

PI.6.10,
PI.7.10,
PI.8.10

* * * * 6.1.4.B,
7-8.3.1.D

* *

6-8.AP.17 * * * 6.EE.5 * MS-ETS1-2,
MS-ETS1-3,
MS-ETS1-4

* * *

6-8.AP.18 * * * * * * * 8.5.5 *

6-8.AP.19 * * * * * * * * *

6-8.IC.20 * * 7.3.5,
8.6.1

* * * 6.1.3.G * 6.3.4.A,
7-8.2.1.N,
7-8.2.4.N,
7-8.2.2.G,
7-8.4.7.S,
7-8.2.4.P,
7-8.3.3.P

6-8.IC.21 RI.6.7,
RI.7.7,
RI.8.7,
SL.6.1,
SL.7.1,
SL.8.1

PI.6.1, PI.6.5,
PI.7.1, PI.7.5,
PI.8.1, PI.8.5

* * * * * * 6.1.5.M,
6.7.3.M,
7-8.1.5.M

6-8.IC.22 * * * * * * 6.4.2.C * *

California Department of Education Appendix | 197

Computer
Science
Standard

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model
School
Library

Physical
Education

Health
Education

6-8.IC.23 * * * * * * 6.3.1.H,
7-8.3.1.A,
7-8.3.1.B,
7-8.3.1.E,
7-8.4.2.A,
7-8.4.2.B

* *

6-8.IC.24 * * * * * * 7-8.3.1.A,
7-8.3.1.B,
7-8.3.1.E,
7-8.4.2.A,
7-8.4.2.B

* 6.1.7.M

Note: Cross-disciplinary references from the interdisciplinary examples listed in the standards document may or may not be included on this
table, as the connections listed above are meant to be general connections rather than aligned to specific examples.

198 | Appendix California Department of Education

Grade levels 9–12

There is a relationship between the computer science and content standards in other subject areas, particularly in the Earth and Human
Activity (ESS3) and Engineering Design (ETS1) disciplinary core ideas (DCIs) of the Next Generation Science Standards (NGSS). Although the
NGSS standards are more specific to scientific domains, both sets of standards ask students to generate, evaluate, and refine computational
models or simulations, and decompose problems into smaller components to facilitate designing solutions.

High school mathematics content will support student learning in computer science. High school standards in Algebra and Functions will
support students in understanding, creating, and refining computational models and applying encryption techniques in computer science.
High school standards in Statistics and Probability, particularly standards about interpreting data and making inferences will provide
conceptual grounding for computer science standards in the Data and Analysis concept area.

The table below provides a detailed look the connections between standards in core academic disciplines and computer science.

Key: Asterisk symbol (*) = Not found.

CA CS
Standard
Identifier

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model School
Library

Health
Education

9-12.CS.1 W.9-10.2 and
W.11-12.2,
L.9-10.6 and
L.11-12.6,
SL.9-10.4 and
SL.11-12.4,
WHST.9-10.2
and WHST.11-
12.2

PI.9-12.9,
PI.9-12.10,
PI.9-12.12

* * * * * *

9-12.CS.2 * * * * * * * *

9-12.CS.3 * * * * * * * *

California Department of Education Appendix | 199

CA CS
Standard
Identifier

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model School
Library

Health
Education

9-12.NI.4 SL.9-10.1 and
SL.11-12.1,
SL.9-10.4 and
SL.11-12.4

PI.9-12.1,
PI.9-12.5,
PI.9-12.9,
PI.9-12.10,
PI.9-12.12

* * * * * *

9-12.NI.5 W.9-10.2 and
W.11-12.2,
L.9-10.6 and
L.11-12.6,
SL.9-10.4 and
SL.11-12.4

PI.9-12.9,
PI.9-12.10,
PI.9-12.12

* * * * * *

9-12.NI.6 * * * * * * * *

9-12.NI.7 * * * * * * * *

9-12.DA.8 * * * * * * * *

9-12.DA.9 W.9-10.2 and
W.11-12.2,
L.9-10.6 and
L.11-12.6,
WHST.11-12.2,
SL.9-10.4 and
SL.11-12.4

PI.9-12.9,
PI.9-12.10,
PI.9-12.12

* * * * * *

9-12.DA.10 RST.9-10.7,
RST.11-12.7

* * S-ID.1,
S-ID.5, S-ID.6

* * 9-12 3.3 *

200 | Appendix California Department of Education

CA CS
Standard
Identifier

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model School
Library

Health
Education

9-12.DA.11 * * * S-IC.2 * HS-PS3-1,
HS-ESS3-3,
HS-ESS3-6,
HS-ETS1-4

 9-12 3.3 *

9-12.AP.12 * * * * * * * *

9-12.AP.13 * * * * * * * *

9-12.AP.14 W.9-10.1 and
W.11-12.1,
L.9-10.6 and
L.11-12.6,
WHST.9-10.1
and WHST.11-
12.1

PI.9-12.11,
PI.9-12.12

* * * * * *

9-12.AP.15 * * * * * HS-ESS3-4 * *

9-12.AP.16 * * * * * HS-ETS1-2 * *

9-12.AP.17 * * * * * * * *

9-12.AP.18 * * * * * * * *

California Department of Education Appendix | 201

CA CS
Standard
Identifier

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model School
Library

Health
Education

9-12.AP.19 W.9-10.2 and
W.11-12.2,
L.9-10.6 and
L.11-12.6,
WHST.11-12.2,
SL.9-10.4 and
SL.11-12.4

PI.9-12.9,
PI.9-12.10,
PI.9-12.12

12.2.2 * * * 9-12 3.1 *

9-12.AP.20 * * * * * * * *

9-12.AP.21 * * * * * * * *

9-12.AP.22 W.9-10.2,
L.9-10.6 and
L.11-12.6,
WHST.11-12.2,
SL.9-10.4 and
SL.11-12.4

PI.9-12.9,
PI.9-12.10,
PI.9-12.12

* * * * * *

9-12.IC.23 RST.11-12.7,
RST.11-12.9

* * * Visual Arts
9-12.5.1

HS-ESS3-4 9-12 2.1,
9-12 2.2,
9-12 2.3,
9-12 3.2

*

202 | Appendix California Department of Education

CA CS
Standard
Identifier

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model School
Library

Health
Education

9-12.IC.24 W.9-10.7 and
W.11-12.7,
W.9-10.8 and
W.11-12.8,
W.9-10.9 and
W.11-12.9,
L.9-10.6 and
L.11-12.6

PI.9-12.9,
PI.9-12.10,
PI.9-12.12

* * * * * *

9-12.IC.25 * * * * * * * *

9-12.IC.26 RST.11-12.7,
RST.11-12.9

* * * Visual Arts
9-12.5.1

HS-ESS3-4 9-12 2.1,
9-12 2.2,
9-12 2.3,
9-12 3.2

*

9-12.IC.27 * * * * * * * *

9-12.IC.28 W.9-10.2 and
W.11-12.2,
L.9-10.6 and
L.11-12.6,
WHST.11-12.2,
SL.9-10.4 and
SL.11-12.4

PI.9-12.9,
PI.9-12.10,
PI.9-12.12

12.2.2 * * * 9-12 3.1 *

California Department of Education Appendix | 203

CA CS
Standard
Identifier

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model School
Library

Health
Education

9-12.IC.29 W.9-10.2 and
W.11-12.2,
L.9-10.6 and
L.11-12.6,
WHST.11-12.2,
SL.9-10.4 and
SL.11-12.4

PI.9-12.9,
PI.9-12.10,
PI.9-12.12

* * * * * *

9-12.IC.30 RST.11-12.7,
RST.11-12.9,
WHST.9-10.1
and WHST.11-
12.1

* * * * * 9-12 2.1,
9-12 2.2,
9-12 2.3,
9-12 3.1

*

9-12S.CS.1 * * * * * * * *

9-12S.CS.2 W.9-10.2 and
W.11-12.2,
L.9-10.6 and
L.11-12.6,
WHST.11-12.2,
SL.9-10.4 and
SL.11-12.4

PI.9-12.9,
PI.9-12.10,
PI.9-12.12

* * * * * *

9-12S.NI.3 * * * * * * * *

204 | Appendix California Department of Education

CA CS
Standard
Identifier

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model School
Library

Health
Education

9-12S.NI.4 W.9-10.2 and
W.11-12.2,
L.9-10.6 and
L.11-12.6,
WHST.11-12.2,
SL.9-10.4 and
SL.11-12.4

PI.9-12.9,
PI.9-12.10,
PI.9-12.12

* * * * * *

9-12S.NI.5 * * * * * * 9-12 3.1 *

9-12S.NI.6 * * * * * * * *

9-12S.DA.7 * * * S-IC.3 * * 9-12 3.3 *

9-12S.DA.8 * * * S-IC.1,
S-IC.4, S-IC.5

* HS-ESS3-5 9-12 3.3 *

9-12S.DA.9 RST.11-12.7,
RST.11-12.9,
WHST.9-10.1
and WHST.11-
12.1

* * S-IC.2, S-IC.5 * HS-LS2-1,
HS-ESS1-4

9-12 2.1,
9-12 2.2,
9-12 2.3,
9-12 3.2

*

9-12S.AP.10 W.9-10.2 and
W.11-12.2,
L.9-10.6 and
L.11-12.6

PI.9-12.10 * * * * * *

9-12S.AP.11 * * * * * * * *

9-12S.AP.12 * * * * * * * *

California Department of Education Appendix | 205

CA CS
Standard
Identifier

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model School
Library

Health
Education

9-12S.AP.13 * * * * * * * *

9-12S.AP.14 * * * * * * * *

9-12S.AP.15 * * * * * * * *

9-12S.AP.16 * * * * * * * *

9-12S.AP.17 * * * * * * * *

9-12S.AP.18 * * * * * * * *

9-12S.AP.19 * * * * * * * *

9-12S.AP.20 * * * * * * * *

9-12S.AP.21 * * * * * * 9-12 3.1 *

9-12S.AP.22 * * * * * * * *

9-12S.AP.23 * * * * * * * *

9-12S.AP.24 * * * * * * * *

9-12S.AP.25 * * * * * * * *

9-12S.AP.26 * * * * * * * *

9-12S.IC.27 RST.11-12.7,
RST.11-12.9,
WHST.9-10.1
and WHST.11-
12.1

* * * * HS-ESS3-3,
HS-ESS3-4,
HS-ESS3-6,
HS-ETS1-4

9-12 2.1,
9-12 2.2,
9-12 2.3,
9-12 3.2

*

206 | Appendix California Department of Education

CA CS
Standard
Identifier

ELA and
Literacy

English
Language
Development

History–
Social
Studies

Mathematics
Visual and
Performing
Arts

Next
Generation
Science

Model School
Library

Health
Education

9-12S.IC.28 RST.11-12.7,
RST.11-12.9

* * * * * 9-12 2.1,
9-12 2.2,
9-12 2.3,
9-12 3.2

*

9-12S.IC.29 RST.11-12.7,
RST.11-12.9,
WHST.9-10.1
and WHST.11-
12.1

* * * * * 9-12 2.1,
9-12 2.2,
9-12 2.3,
9-12 3.2

*

9-12S.IC.30 RST.11-12.8,
WHST.9-10.1
and WHST.11-
12.1, SL.9-
10.1 and
SL.11-12.1

PI.9-12.11 12.2.2 * * * 9-12 2.1,
9-12 2.1,
9-12 2.2,
9-12 2.3,
9-12 3.1,
9-12 3.2

*

Note: Cross-disciplinary references from the interdisciplinary examples listed in the standards document may or may not be included on this
table, as the connections listed above are meant to be general connections rather than aligned to specific examples.

California Department of Education Appendix | 207

Career Technical Education (CTE)
Connections
California’s Career Technical Education (CTE) standards are
separated into 15 industry sectors, with separate career pathways
defined within each sector, and were adopted by the SBE on
January 16, 2013. The CS practices are synergistic with the CTE
standards for career ready practices and can be adopted by both
academic and CTE teachers.

Both the CTE and CS standards are founded in an academic
discipline and provide career preparation. Both sets of practices
emphasize clear communication, collaboration, understanding
of diverse viewpoints, and problem-solving skills. There are two
notable differences between the CS and the CTE standards. First,
the CS standards identify foundational knowledge for all students—
starting at the kindergarten level—in preparation for college and

career readiness. Second, while the CTE standards emphasize
specific technologies and industry protocols, the CS standards
strive to be technology agnostic.

There are four CTE sectors and pathways that overlap with the CS
standards:

 § The Information and Communication Technologies (ICT) sector

 § The Game Design and Integration pathway within the Arts,
Media, and Entertainment (AME) sector

 § The Telecommunications pathway within the Energy,
Environment, and Utilities (EEU) sector

 § The Public Safety pathway within the Public Services (PS)
sector

CTE Standards for Career Ready Practice

The table below provides a detailed look at the connections between the CTE and CS standards and practices.

Key: Asterisk symbol (*) = Not found.

CTE Standards for Career Ready Practice Computer Science Practices

1. Apply appropriate technical skills and academic knowledge Alignment listed within individual sectors.

2. Communicate clearly, effectively, and with reason Practice 7.2 Describe, justify, and document computational
processes and solutions using appropriate terminology consistent
with the intended audience and purpose.

3. Develop an education and career plan aligned with personal goals *

208 | Appendix California Department of Education

CTE Standards for Career Ready Practice Computer Science Practices

4. Apply technology to enhance productivity Practice 2.4 Evaluate and select technological tools that can be
used to collaborate on a project.

Practice 3.1 Identify complex, interdisciplinary, real-world problems
that can be solved computationally.

Practice 3.3 Evaluate whether it is appropriate and feasible to solve
a problem computationally.

5. Utilize critical thinking to make sense of problems and persevere
in solving them

Practice 3.2 Decompose complex real-world problems into
manageable subproblems that could integrate existing solutions or
procedures.

Practice 4.1 Extract common features from a set of interrelated
processes or complex phenomena.

Practice 4.3 Create modules and develop points of interaction that
can apply to multiple situations and reduce complexity.

Practice 5.1 Plan the development of a computational artifact using
an iterative process that includes reflection on and modification
of the plan, taking into account key features, time and resource
constraints, and user expectations.

6. Practice personal health and understand financial literacy *

7. Act as a responsible citizen in the workplace and the community Practice 7.3 Articulate ideas responsibly by observing intellectual
property rights and giving appropriate attribution.

8. Model integrity, ethical leadership, and effective management Practice 2.2 Create team norms, expectations, and equitable
workloads to increase efficiency and effectiveness.

Practice 2.3 Solicit and incorporate feedback from, and provide
constructive feedback to, team members and other stakeholders.

California Department of Education Appendix | 209

CTE Standards for Career Ready Practice Computer Science Practices

9. Work productively in teams while integrating cultural and global
competence

Practice 2.1 Cultivate working relationships with individuals
possessing diverse perspectives, skills, and personalities.

10. Demonstrate creativity and innovation Practice 5.2 Create a computational artifact for practical intent,
personal expression, or to address a societal issue.

11. Employ valid and reliable research strategies Practice 4.4 Model phenomena and processes and simulate
systems to understand and evaluate potential outcomes.

Practice 6.1 Systematically test computational artifacts by
considering all scenarios and using test cases.

Practice 7.1 Select, organize, and interpret large data sets from
multiple sources to support a claim.

12. Understand the environmental, social, and economic impacts of
decisions

Practice 1.1 Include the unique perspectives of others and
reflect on one’s own perspectives when designing and developing
computational products.

Practice 1.2 Address the needs of diverse end users during the design
process to produce artifacts with broad accessibility and usability.

Practice 1.3 Employ self- and peer-advocacy to address bias in
interactions, product design, and development methods.

The CTE pathways also contain 11 knowledge and performance anchor standards that are common across each of the industry sectors:

1. Academics (sector-specific)
2. Communications
3. Career Planning and Management
4. Technology

5. Problem Solving and Critical Thinking
6. Health and Safety
7. Responsibility and Flexibility
8. Ethics and Legal Responsibilities

9. Leadership and Teamwork
10. Technical Knowledge and Skills
11. Demonstration and Application

All anchor standards are reinforced in the computer science content and practice standards except Academics (sector-specific), Career
Planning and Management, and Health and Safety.

210 | Appendix California Department of Education

Information and Communication Technologies Sector

Note: Specific CTE standards are referenced in parentheses following each CS standard.

Key: Asterisk symbol (*) = Not found.

Information Support and
Services Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

A3.0 Access and transmit
information in a networked
environment.

6-8.NI.4 Model the role of
protocols in transmitting data
across networks and the Internet
(A3.1).

* *

A5.0 Identify requirements for
maintaining secure network
systems.

6-8.NI.5 Explain potential
security threats and security
measures to mitigate those
threats (A5.2, A5.3).

9-12.NI.6 Compare and contrast
security measures to address
various security threats (A5.2,
A5.3).

9-12S.NI.5 Develop solutions to
security threats (A5.2, A5.3).

A6.0 Diagnose and solve
software, hardware, networking,
and security problems.

6-8.CS.3 Systematically apply
troubleshooting strategies to
identify and resolve hardware and
software problems in computing
systems (A6.1, A6.2, A6.3).

9-12.CS.3 Develop guidelines
that convey systematic
troubleshooting strategies that
others can use to identify and fix
errors (A6.2, A6.3).

*

A8.0 Manage and implement
information, technology, and
communication projects.

6-8.CS.2 Design a project that
combines hardware and software
components to collect and
exchange data (A8.1, A8.5).

* *

California Department of Education Appendix | 211

Networking Pathway Standard Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

B1.0 Identify and describe the
principles of networking and
the technologies, models, and
protocols used in a network.

6-8.NI.4 Model the role of
protocols in transmitting data
across networks and the internet
(B1.1, B1.3).

9-12.NI.4 Describe issues that
impact network functionality
(B1.1, B1.3, B1.4).

9-12S.NI.3 Examine the
scalability and reliability of
networks by describing the
relationships between routers,
switches, servers, topology, and
addressing (B1.1, B1.3, B1.4,
B1.5).

B2.0 Identify, describe, and
implement network media and
physical topologies.

* * 9-12S.NI.3 Examine the
scalability and reliability of
networks by describing the
relationships between routers,
switches, servers, topology, and
addressing (B2.3).

B4.0 Demonstrate proper
network administration and
management skills.

* 9-12.NI.4 Describe issues that
impact network functionality
(B4.1).

*

B6.0 Use and assess network
communication applications and
infrastructure.

* 9-12.NI.4 Describe issues that
impact network functionality
(B4.1).

9-12S.NI.3 Examine the
scalability and reliability of
networks by describing the
relationships between routers,
switches, servers, topology, and
addressing (B2.3).

212 | Appendix California Department of Education

Networking Pathway Standard Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

B8.0 Identify security threats to
a network and describe general
methods to mitigate those
threats.

6-8.NI.5 Explain potential
security threats and security
measures to mitigate those
threats (B8.1, B8.4, B8.5).

9-12.NI.6 Compare and contrast
security measures to address
various security threats (B8.1,
B8.4, B8.5).

9-12S.NI.5 Develop solutions to
security threats (B8.0).

Software and Systems
Development Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

C1.0 Identify and apply the
systems development process.

6-8.AP.18 Distribute tasks and
maintain a project timeline
when collaboratively developing
computational artifacts (C1.4,
C1.5).

9-12.AP.21 Design and develop
computational artifacts working
in team roles using collaborative
tools (C1.4).

9-12S.AP.19 Plan and develop
programs for broad audiences
using a specific software life
cycle process (C1.1).

9-12S.AP.25 Use version control
systems, integrated development
environments, and collaborative
tools and practices (code
documentation) while developing
software within a group (C1.4,
C1.5).

C2.0 Define and analyze systems
and software requirements.

6-8.AP.15 Seek and incorporate
feedback from team members
and users to refine a solution
that meets user needs (C2.3,
C2.4, C2.5).

9-12.AP.18 Systematically design
programs for broad audiences
by incorporating feedback from
users (C2.3, C2.4, C2.5).

9-12S.IC.27 Evaluate
computational artifacts with
regard to improving their
beneficial effects and reducing
harmful effects on society (C2.2).

California Department of Education Appendix | 213

Software and Systems
Development Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

C2.0 Define and analyze systems
and software requirements.
(continued)

6-8.IC.21 Discuss issues of bias
and accessibility in the design of
existing technologies (C2.2).

6-8.IC.22 Collaborate with many
contributors when creating a
computational artifact (C2.3,
C2.4, C2.5).

9-12.IC.24 Identify impacts
of bias and equity deficit on
design and implementation of
computational artifacts and
apply appropriate processes for
evaluating issues of bias (C2.2).

C3.0 Create effective interfaces
between humans and technology.

6-8.CS.1 Design modifications
to computing devices in order to
improve the ways users interact
with the devices (C3.2, C3.3).

6-8.CS.2 Design a project that
combines hardware and software
components to collect and
exchange data (C3.1).

9-12.CS.1 Describe ways in
which abstractions hide the
underlying implementation
details of computing systems to
simplify user experiences (P4.1).

9-12.IC.23 Evaluate the ways
computing impacts personal,
ethical, social, economic, and
cultural practices (C3.3).

9-12.IC.24 Identify impacts
of bias and equity deficit on
design and implementation of
computational artifacts and
apply appropriate processes for
evaluating issues of bias (C3.3).

*

214 | Appendix California Department of Education

Software and Systems
Development Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

C4.0 Develop software using
programming languages.

6-8.DA.7 Represent data in
multiple ways (C4.4).

6-8.AP.11 Create clearly named
variables that store data, and
perform operations on their
contents (C4.4).

6-8.AP.12 Design and iteratively
develop programs that combine
control structures, including
nested loops and compound
conditionals (C4.9).

6-8.AP.19 Document programs in
order to make them easier to use,
read, test, and debug (C4.11).

9-12.DA.8 Translate between
different representations of
data abstractions of real-
world phenomena, such as
characters,numbers, and images
(C4.4).

9-12.AP.13 Create more
generalized computational
solutions using collections
instead of repeatedly using
simple variables (C4.7).

9-12.AP.14 Justify the selection
of specific control structures by
identifying tradeoffs associated
with implementation, readability,
and performance (C4.9).

9-12.AP.15 Iteratively design and
develop computational artifacts
for practical intent, personal
expression, or to address a
societal issue by using events to
initiate instructions (C4.9).

9-12S.AP.12 Implement
searching and sorting algorithms
to solve computational problems
(C4.10).

9-12S.AP.13 Evaluate algorithms
in terms of their efficiency
(C4.10).

9-12S.AP.14 Compare and
contrast fundamental data
structures and their uses (C4.7).

9-12S.AP.26 Compare multiple
programming languages and
discuss how their features make
them suitable for solving different
types of problems (C4.1).

California Department of Education Appendix | 215

Software and Systems
Development Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

C4.0 Develop software using
programming languages.
(continued)

9-12.AP.16 Decompose problems
into smaller components through
systematic analysis, using
constructs such as procedures,
modules, and/or classes (C4.8).

9-12.AP.17 Create computational
artifacts using modular design
(C4.9).

9-12.AP.22 Document
decisions made during the
design process using text,
graphics, presentations, and/
or demonstrations in the
development of complex
programs (C4.11).

C5.0 Test, debug, and improve
software development work.

6-8.AP.17 Systematically test and
refine programs using a range of
test cases (C5.4, C5.5, C5.6).

9-12.AP.20 Iteratively evaluate
and refine a computational
artifact to enhance its
performance, reliability, usability,
and accessibility (C5.4, C5.5,
C5.6).

9-12S.AP.22 Develop and use a
series of test cases to verify that
a program performs according to
its design specifications (C5.4,
C5.5, C5.6).

9-12S.AP.24 Evaluate key
qualities of a program through
a process such as code review
(C5.1).

216 | Appendix California Department of Education

Software and Systems
Development Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

C6.0 Integrate a variety of media
into development projects.

6-8.AP.16 Incorporate existing
code, media, and libraries into
original programs, and give
attribution (C6.6).

* *

C8.0 Develop databases. 6-8.DA.8 Collect data using
computational tools and
transform the data to make it
more useful (C8.7).

9-12.DA.10 Create data
visualizations to help others
better understand real-world
phenomena (C8.8).

9-12S.DA.7 Select and use data
collection tools and techniques
to generate data sets that
reveal patterns or communicate
information (C8.8).

C9.0 Develop software for a
variety of devices, including
robotics.

* * 9-12S.AP.20 Develop programs
for multiple computing platforms
(C9.0).

C10. Develop intelligent
computing.

* * 9-12S.AP.10 Describe how
artificial intelligence drives many
software and physical systems
(C10.2).

9-12S.AP.11 Implement an
algorithm that uses artificial
intelligence to overcome a simple
challenge (C10.4).

California Department of Education Appendix | 217

Games and Simulation Pathway
Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

D3.0 Create a working game or
simulation individually or as part
of a team.

6-8.AP.19 Document programs in
order to make them easier to use,
read, test, and debug (D3.2).

9-12.AP.22 Document decisions
made during the design process
using text, graphics, presentations,
and/or demonstrations in the
development of complex programs
(D3.2, D3.4).

*

D5.0 Integrate music, sound, art,
and animation as it applies to
the environmental design of the
game/simulation.

6-8.AP.16 Incorporate existing
code, media, and libraries into
original programs, and give
attribution (D5.1).

* *

D6.0 Explain the role and
principles of event modeling and
interface design and apply those
principles in a game/simulation
design and project.

6-8.DA.9 Test and analyze the
effects of changing variables
while using computational
models (D6.1, D6.2).

6-8.AP.15 Seek and incorporate
feedback from team members
and users to refine a solution
that meets user needs (D6.3).

9-12.DA.11 Refine
computational models to better
represent the relationships
among different elements or data
collected from a phenomenon or
process (D6.1, D6.2).

9-12.AP.18 Systematically design
programs for broad audiences
by incorporating feedback from
users (D6.3).

9-12.AP.20 Iteratively evaluate
and refine a computational
artifact to enhance its
performance, reliability, usability,
and accessibility (D6.3, D6.4).

*

218 | Appendix California Department of Education

Games and Simulation Pathway
Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

D7.0 Acquire and apply
appropriate programming
skills for rendering a single
player or multiuser game or
simulation project, including
program control, conditional
branching, memory management,
scorekeeping, timed event
strategies, and implementation
issues.

6-8.NI.4 Model the role of
protocols in transmitting data
across networks and the internet
(D7.1).

6-8.NI.5 Explain potential
security threats and security
measures to mitigate threats
(D7.1).

6-8.AP.17 Systematically test and
refine programs using a range of
test cases (D7.3).

6-8.AP.18 Distribute tasks and
maintain a project timeline
when collaboratively developing
computational artifacts (D7.2).

6-8.AP.19 Document programs
in order to make them easier to
use, read, test, and debug (D7.3,
D7.4).

9-12.NI.4 Describe issues that
impact network functionality
(D7.1).

9-12.NI.6 Compare and contrast
security measures to address
various security threats (D7.1).

9-12.AP.20 Iteratively evaluate
and refine a computational
artifact to enhance its
performance, reliability, usability,
and accessibility (D7.3).

9-12.AP.22 Document
decisions made during the
design process using text,
graphics, presentations, and/
or demonstrations in the
development of complex
programs (D7.2).

9-12S.NI.3 Examine the
scalability and reliability of
networks, by describing the
relationship between routers,
switches, servers, topology, and
addressing (D7.1).

9-12S.NI.5 Develop solutions to
security threats (D7.1).

9-12S.AP.20 Develop programs
for multiple computing platforms
(D7.1).

9-12.S.21 Identify and fix
security issues that might
compromise computer programs
(D7.1).

9-12S.AP.22 Develop and use a
series of test cases to verify that
a program performs according to
its design specifications (D7.3).

9-12S.AP.24 Evaluate key
qualities of a program through a
process such as a code review
(D7.2).

California Department of Education Appendix | 219

Games and Simulation Pathway
Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

D7.0 Acquire and apply
appropriate programming
skills for rendering a single
player or multiuser game or
simulation project, including
program control, conditional
branching, memory management,
scorekeeping, timed event
strategies, and implementation
issues.
(continued)

9-12S.AP.25 Use version control
systems, integrated development
environments (IDEs), and
collaborative tools and practices
(e.g., code documentation) while
developing software within a
group (D7.2).

D8.0 Acquire and apply
appropriate artificial intelligence
(AI) techniques used by the game
development industry.

* * 9-12S.AP.10 Describe how
artificial intelligence drives many
software and physical systems
(D8.1).

9-12S.AP.11 Implement an
algorithm that uses artificial
intelligence to overcome a simple
challenge (D8.2).

220 | Appendix California Department of Education

Other Sectors

Note: Specific CTE standards are referenced in parentheses following each CS standard.

Key: Asterisk symbol (*) = Not found.

Arts, Media, and Entertainment:
Game Design and Integration
Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

D2.0 Analyze the core tasks and
challenges of video game design
and explore the methods used
to create and sustain player
immersion.

6-8.AP.13 Decompose problems
and subproblems into parts
to facilitate the design,
implementation, and review of
programs (D2.2).

9-12.AP.16 Decompose problems
into smaller components through
systematic analysis, using
constructs such as procedures,
modules, and/or classes (D2.2).

9-12S.AP.16 Analyze a large-
scale computational problem and
identify generalizable patterns or
problem components that can be
applied to a solution (D2.2).

D3.0 Acquire and apply
appropriate game programming
concepts and skills to develop a
playable video game.

6-8.AP.11 Create clearly named
variables that store data and
perform operations on their
contents (D3.1).

6-8.AP.12 Design and iteratively
develop programs that combine
control structures, including
nested loops and compound
conditionals (D3.1).

9-12.DA.8 Translate between
different representations of
data abstractions of real-world
phenomena, such as characters,
numbers, and images (D3.1).

9-12.AP.13 Create more
generalized computational
solutions using collections
instead of repeatedly using
simple variables (D3.1).

9-12.AP.14 Justify the selection
of specific control structures by
identifying tradeoffs associated
with implementation, readability,
and performance (D3.1).

9-12S.AP.14 Compare and
contrast fundamental data
structures and their uses (D3.1).

California Department of Education Appendix | 221

Arts, Media, and Entertainment:
Game Design and Integration
Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

D3.0 Acquire and apply
appropriate game programming
concepts and skills to develop a
playable video game.
(continued)

9-12.AP.15 Iteratively design and
develop computational artifacts
for practical intent, personal
expression, or to address a
societal issue by using events to
initiate instructions (D3.1).

D4.0 Students will demonstrate
mastery of game art and
multimedia, including music,
sound, art, and animation.

6-8.AP.16 Incorporate existing
code, media, and libraries into
original programs, and give
attribution (D4.8).

6-8.IC.23 Compare tradeoffs
associated with licenses for
computational artifacts to
balance the protection of the
creators’ rights and the ability for
others to use and modify (D4.8).

9-12.AP.19 Explain the
limitations of licenses that restrict
use of computational artifacts
when using resources such as
libraries (D4.8).

9-12.IC.28 Explain the beneficial
and harmful effects that
intellectual property laws can
have on innovation (D4.8).

9-12S.IC.30 Debate laws and
regulations that impact the
development and use of software
(D4.8).

D5.0 Demonstrate an
understanding of testing
techniques used to evaluate,
assess, rate, and review quality
assurance of video games.

6-8.AP.17 Systematically test and
refine programs using a range of
test cases (D5.2).

6-8.IC.21 Discuss issues of bias
and accessibility in the design of
existing technologies (D5.4).

9-12.AP.20 Iteratively evaluate
and refine a computational
artifact to enhance its
performance, reliability, usability,
and accessibility (D5.2).

9-12S.AP.22 Develop and use a
series of test cases to verify that
a program performs according to
its design specifications (D5.2).

222 | Appendix California Department of Education

Arts, Media, and Entertainment:
Game Design and Integration
Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

D6.0 Understand the general
procedures, documentation,
and requirements of large-scale
game design projects. Examine
and categorize the significant
processes in the production of
games.

6-8.AP.18 Distribute tasks and
maintain a project timeline
when collaboratively developing
computational artifacts (D6.4).

6-8.AP.19 Document programs in
order to make them easier to use,
read, test, and debug (D6.7).

9-12.AP.21 Design and develop
computational artifacts working
in team roles using collaborative
tools (D6.1, D6.4).

9-12.AP.22 Document
decisions made during the
design process using text,
graphics, presentations, and/
or demonstrations in the
development of complex
programs (D6.7).

9-12S.AP.25 Use version control
systems, integrated development
environments, and collaborative
tools and practices (code
documentation) while developing
software within a group (D6.1,
D6.4).

D8.0 Understand the impact of
games and the role of play in
human culture. Analyze the ethics
and global impact of the game
industry.

6-8.IC.20 Compare tradeoffs
associated with computing
technologies that affect people’s
everyday activities and career
options (D8.4, D8.5).

9-12.IC.23 Evaluate the ways
computing impacts personal,
ethical, social, economic, and
cultural practices (D8.3, D8.4,
D8.5, D8.6).

9-12S.IC.27 Evaluate
computational artifacts with
regard to improving their
beneficial effects and reducing
harmful effects on society (D8.3,
D8.4, D8.5, D8.6, D8.7).

California Department of Education Appendix | 223

Arts, Media, and Entertainment:
Game Design and Integration
Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

D10.0 Students will build a game
that demonstrates teamwork and
project management by creating
a game design production plan
that describes the game play,
outcomes, controls, rewards,
interface, and artistic style of a
video game.

6-8.AP.15 Seek and incorporate
feedback from team members
and users to refine a solution
that meets user needs (D10.2).

6-8.AP.17 Systematically test and
refine programs using a range of
test cases (D10.6).

6-8.AP.18 Distribute tasks and
maintain a project timeline
when collaboratively developing
computational artifacts (D10.0).

6-8.AP.19 Document programs in
order to make them easier to use,
read, test, and debug (D10.1,
10.6).

9-12.AP.18 Systematically design
programs for broad audiences
by incorporating feedback from
users (D10.2).

9-12.AP.20 Iteratively evaluate
and refine a computational
artifact to enhance its
performance, reliability, usability,
and accessibility (D10.6).

9-12.AP.21 Design and develop
computational artifacts working
in team roles using collaborative
tools (D10.0).

9-12.AP.22 Document
decisions made during the
design process using text,
graphics, presentations, and/
or demonstrations in the
development of complex
programs (D10.1).

9-12S.AP.22 Develop and use a
series of test cases to verify that
a program performs according to
its design specifications (D10.6).

9-12S.AP.25 Use version control
systems, integrated development
environments, and collaborative
tools and practices (code
documentation) while developing
software within a group (D10.0).

224 | Appendix California Department of Education

Energy, Environment, and
Utilities: Telecommunications
Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

C1.0 Understand the basic
principles and concepts that
impact the telecommunications
industry, including systems,
concepts, and regulations.

6-8.IC.20 Compare tradeoffs
associated with computing
technologies that affect people’s
everyday activities and career
options (C1.1, C1.2).

9-12.NI.5 Describe the design
characteristics of the internet
(C1.1).

9-12.NI.4 Explain how the
characteristics of the internet
influence the systems developed
on it (C1.1).

C2.0 Demonstrate understanding
and use of the basic and
emerging technologies that
impact the telecommunications
industry.

6-8.NI.4 Model the role of
protocols in transmitting data
across networks and the internet
(C2.9).

* *

C3.0 Examine the role and
functions of satellites in
telecommunications.

6-8.NI.4 Model the role of
protocols in transmitting data
across networks and the internet
(C3.3, C3.8).

9-12.NI.4 Describe issues that
impact network functionality
(C3.3, C3.8).

9-12S.NI.3 Examine the
scalability and reliability of
networks, by describing the
relationship between routers,
switches, servers, topology, and
addressing (C3.3, C3.8).

C4.0 Research the components,
interaction, and operations of
wireless telecommunications
systems.

6-8.NI.4 Model the role of
protocols in transmitting data
across networks and the internet
(C4.4).

9-12.NI.4 Describe issues that
impact network functionality
(C4.4).

9-12S.NI.3 Examine the
scalability and reliability of
networks, by describing the
relationship between routers,
switches, servers, topology, and
addressing (C4.4).

California Department of Education Appendix | 225

Energy, Environment, and
Utilities: Telecommunications
Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

C5.0 Research the components,
interaction, and operations of
fixed-wire telecommunications
systems.

6-8.NI.4 Model the role of
protocols in transmitting data
across networks and the internet
(C5.3).

9-12.NI.4 Describe issues that
impact network functionality
(C5.3).

9-12S.NI.3 Examine the
scalability and reliability of
networks, by describing the
relationship between routers,
switches, servers, topology, and
addressing (C5.3).

C6.0 Consider privacy
and security issues of the
telecommunications systems.

6-8.NI.5 Explain potential
security threats and security
measures to mitigate those
threats (C6.2).

6-8.IC.24 Compare tradeoffs
between allowing information
to be public and keeping
information private and secure
(C6.2).

9-12.NI.6 Compare and contrast
security measures to address
various security threats (C6.20).

9-12S.NI.3 Examine the
scalability and reliability of
networks by describing the
relationships between routers,
switches, servers, topology, and
addressing (C6.1).

226 | Appendix California Department of Education

Public Services Public Safety
Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

A8.0 Demonstrate an
understanding of the functions
and career opportunities within
the US Department of Homeland
security (DHS).

6-8.NI.5 Explain potential
security threats and security
measures to mitigate threats
(A8.5).

6-8.NI.6 Apply multiple methods
of information protection to
model the secure transmission of
information (A8.5).

9-12.NI.6 Compare and contrast
security measures to address
various security threats (A8.4).

9-12.NI.7 Compare and contrast
cryptographic techniques to
model the secure transmission of
information (A8.4).

9-12S.NI.5 Develop solutions to
security threats (A8.6).

9-12S.NI.6 Analyze cryptographic
techniques to model the secure
transmission of information
(A8.6).

Health Science and Medical
Technology Biotechnology
Pathway Standard

Related 6–8 CS Standards Related 9–12 Core CS Standards Related 9–12 Specialty CS
Standards

A5.0 Integrate computer skills
into program components.

6-8.DA.8 Collect data using
computational tools and
transform the data to make it
more useful (A5.2).

9-12.DA.10 Create data
visualizations to help others
better understand real-world
phenomena (A5.2).

9-12S.DA.7 Select and use data
collection tools and techniques
to generate data sets (A5.2).

California Department of Education Appendix | 227

Connections to
Postsecondary Education
California State University/University of California
Freshman Minimum Admission Requirements

The California State University (CSU) and University of California
(UC) systems currently accept some computer science courses to
fulfill freshman minimum admission requirements in category “c”
(mathematics), “d” (laboratory science), or “g” (college-preparatory
elective) (Alliance for California Computing Education for Students
and Schools 2019). Alignments between the California computer
science standards and the California mathematics and science
standards and practices are described in detail in Section IV:
Interdisciplinary Connections.

For a computer science course to meet the requirements for category
“c”, it must be designed to give students five core competencies:

1. A view that mathematics is not just a collection of
definitions, algorithms and/or theorems to memorize
and apply, but rather is a coherent and tightly organized
body of knowledge that provides a way to think about and
understand a broad array of phenomena.

2. A proclivity to put time and thought into using mathematics
to grasp and solve unfamiliar problems.

3. A view that mathematics models reality and students should
have the capacity to use mathematical models to guide their
understanding of the world around us.

4. An awareness of special goals of mathematics, such as
clarity and brevity, parsimony, universality and objectivity.

5. Confidence and fluency in handling formulas and
computational algorithms: understanding their motivation
and design, predicting approximate outcomes and
computing them—mentally, on paper or with technology, as
appropriate.

For more information on category “c” course requirements, see
https://hs-articulation.ucop.edu/guide/a-g-subject-requirements/
c-mathematics/.

For a computer science course to meet the requirements for
category “d”, it must align with the eight practices of science
and engineering identified in the California Next Generation
Science Standards. For more information on category “d” course
requirements, see https://hs-articulation.ucop.edu/guide/a-g-
subject-requirements/d-science/.

Students and parents can search the University of California’s
“a-g” approved course list to determine if a high school’s
computer science course satisfies any of the minimum
admission requirements at https://www.ucop.edu/agguide/.
[No longer valid] School administrators can submit computer
science courses for approval through the University of
California’s A-G Course Management Portal at https://hs-
articulation.ucop.edu/agcmp/login#/.

https://hs-articulation.ucop.edu/guide/a-g-subject-requirements/c-mathematics/
https://hs-articulation.ucop.edu/guide/a-g-subject-requirements/c-mathematics/
https://hs-articulation.ucop.edu/guide/a-g-subject-requirements/d-science/
https://hs-articulation.ucop.edu/guide/a-g-subject-requirements/d-science/
https://hs-articulation.ucop.edu/agcmp/login#/
ABerrios
Cross-Out

228 | Appendix California Department of Education

Advanced Placement (AP)

Students who receive a score of 3 or higher on any Advanced
Placement (AP) computer science exam can receive credit
(University of California Admissions n.d.). Currently, there are two
AP computer science exams.

AP Computer Science Principles (CSP) is a newer course that
covers the fundamental principles of computer science. It is
equivalent to a first-semester introductory college computer
science course. AP CSP emphasizes computational thinking skills
and computer science practices similar to those in the California
computer science standards. The course covers seven “Big Ideas”
in computing: creativity, abstraction, data and information,
algorithms, programming, the internet, and global impact. There
is significant overlap between the learning objectives of AP CSP
and the California computer science standards for 9–12 (core and
specialty). The California computer science standards contain a few
additional standards that cover advanced topics in networking and
computer programming. For more information about AP CSP, please
visit the College Board website at https://apstudents.collegeboard.
org/courses/ap-computer-science-principles.

AP Computer Science A (CS A) is a more traditional course
that covers the fundamentals of Java programming. It is an
introductory course for all students interested in the fundamentals
of programming, not just those who intend to major in computer
science in college. The topic outline for AP CS A contains six major
topics: object-oriented program design, program implementation,
program analysis, standard data structures, standard algorithms,
and computing in context. The AP CS A course outline does
not include topics that are included in the Networks and the
Internet and Data and Analysis concept areas of the California
computer science standards. In addition, practices like inclusion,
collaboration, and communicating about computing are de-
emphasized in AP CS A. For more information about AP CS A,
please visit the College Board website at https://apstudent.
collegeboard.org/apcourse/ap-computer-science-a/course-details.

Neither the AP CSP course nor the AP CS A course cover all the
9–12 core CS standards. The table below describes the alignment
between the content of the AP computer science courses and the
CA CS standards for 9–12. Both AP courses contain more specific
learning goals than those outlined here; this table provides a
general overview of areas where there is the greatest overlap.

https://apstudents.collegeboard.org/courses/ap-computer-science-principles
https://apstudents.collegeboard.org/courses/ap-computer-science-principles
https://apstudent.collegeboard.org/apcourse/ap-computer-science-a/course-details
https://apstudent.collegeboard.org/apcourse/ap-computer-science-a/course-details

California Department of Education Appendix | 229

Key: Asterisk symbol (*) = Not found.

CA CS Standard
Identifier

CA CS Standard AP CSP Learning Objectives
(alignments to Essential Knowledge are
given by the letters in parentheses)

AP CS A Topic Outline

9-12.CS.1 Describe ways in which abstractions
hide the underlying implementation
details of computing systems to
simplify user experiences.

LO 2.1.1 Describe the variety of abstractions
used to represent data (A, B, C, D, E, F, G).

LO 2.2.3 Identify multiple levels of abstractions
that are used when writing programs (A, B, C, D,
E, F, G, H, I, J, K).

LO 6.1.1 Explain the abstractions in the internet
and how the internet functions (A, B, C, D, E, F, G,
H, I).

IV C. Classes

9-12.CS.2 Compare levels of abstraction and
interactions between application
software, system software, and
hardware.

LO 2.2.2 Use multiple levels of abstraction to
write programs (A, B).

LO 2.2.3 Identify multiple levels of abstractions
that are used when writing programs (B, C, D, E,
F, G, H, I, J, K).

*

9-12.CS.3 Develop guidelines that convey
systematic troubleshooting strategies
that others can use to identify and fix
errors.

LO 5.4.1 Evaluate the correctness of a program
(E).

III. B. Debugging

9-12.NI.4 Describe issues that impact network
functionality.

LO 6.3.1 Identify existing cybersecurity concerns
and potential options to address these issues
with the internet and the systems built on it (A,
B, C, D, E, F).

*

230 | Appendix California Department of Education

CA CS Standard
Identifier

CA CS Standard AP CSP Learning Objectives
(alignments to Essential Knowledge are
given by the letters in parentheses)

AP CS A Topic Outline

9-12.NI.5 Describe the design characteristics
of the internet.

LO 6.1.1 Explain the abstractions in the internet
and how the internet functions (A, B, C, D, F).

LO 6.2.1 Explain the characteristics of the
internet and the systems built on it (A, D).

*

9-12.NI.6 Compare and contrast security
measures to address various security
threats.

LO 6.3.1 Identify existing cybersecurity concerns
and potential options to address these issues
with the internet and the systems built on it (C,
D, E, F, G, H).

VI. D. Social and ethical
ramifications of computer
use

9-12.NI.7 Compare and contrast cryptographic
techniques to model the secure
transmission of information.

LO 6.3.1 Identify existing cybersecurity concerns
and potential options to address these issues
with the internet and the systems built on it (H, I,
J, K, L).

*

9-12.DA.8 Translate between different
representations of data abstractions
of real-world phenomena, such as
characters, numbers, and images.

LO 2.1.1 Describe the variety of abstractions
used to represent data (A, B, C).

LO 2.1.2 Explain how binary sequences are used
to represent digital data (D, E, F).

*

9-12.DA.9 Describe tradeoffs associated with
how data elements are organized
and stored.

LO 3.1.1 Find patterns and test hypotheses
about digitally processed information to gain
insight and knowledge (B, C).

LO 3.3.1 Analyze how data representation,
storage, security, and transmission of data
involve computational manipulation of
information (C, G, H).

V. A. Operations on data
structures

California Department of Education Appendix | 231

CA CS Standard
Identifier

CA CS Standard AP CSP Learning Objectives
(alignments to Essential Knowledge are
given by the letters in parentheses)

AP CS A Topic Outline

9-12.DA.10 Create data visualizations to help
others better understand real-world
phenomena.

LO 3.1.3 Explain the insight and knowledge
gained from digitally processed data by using
appropriate visualizations, notations, and precise
language (A, B, C, D, E).

*

9-12.DA.11 Refine computational models to
better represent the relationships
among different elements of data
collected from a phenomenon or
process.

LO 2.3.1 Use models and simulations to
represent phenomena (D).

LO 2.3.2 Use models and simulations to
formulate, refine, and test hypotheses (A).

*

9-12.AP.12 Design algorithms to solve
computational problems using a
combination of original and existing
algorithms.

LO 4.1.1 Develop and algorithm for
implementation in a program (E, F, G, H).

V. A. Operations on data
structures

V. B. Searching

V. C. Sorting

9-12.AP.13 Create more generalized
computational solutions using
collections instead of repeatedly
using simple variables.

LO 5.5.1 Employ appropriate mathematical and
logical concepts in programming (H, I, J).

V. A. Operations on data
structures

V. B. Searching

V. C. Sorting

IV. D. Lists

IV. E. Arrays

232 | Appendix California Department of Education

CA CS Standard
Identifier

CA CS Standard AP CSP Learning Objectives
(alignments to Essential Knowledge are
given by the letters in parentheses)

AP CS A Topic Outline

9-12.AP.14 Justify the selection of specific
control structures by identifying
tradeoffs associated with
implementation, readability, and
performance.

LO 5.4.1 Evaluate the correctness of a program
(I, J).

LO 5.5.1 Employ appropriate mathematical and
logical concepts in programming (D, E, F, G, I).

II. B. Programming
constructs

9-12.AP.15 Iteratively design and develop
computational artifacts for practical
intent, personal expression, or to
address a societal issue by using
events to initiate instructions.

LO 1.2.1 Create a computational artifact for
creative expression (E).

LO 5.1.1 Develop a program for creative
expression, to satisfy personal curiosity, or to
create new knowledge (A, B).

LO 5.1.2 Develop a correct program to solve
problems (A).

II. A. Implementation
techniques

9-12.AP.16 Decompose problems into smaller
subproblems through systematic
analysis, using constructs such
as procedures, modules, and/or
classes.

LO 2.2.1 Develop an abstraction when writing a
program or creating other computational artifacts
(A, B, C).

LO 2.2.2 Use multiple levels of abstraction to
write programs (A–B).

LO 5.3.1 Use abstraction to manage complexity
in programs (A–G, L).

I. A. Program and class
design

II. A. Implementation
techniques

IV. C. Classes

California Department of Education Appendix | 233

CA CS Standard
Identifier

CA CS Standard AP CSP Learning Objectives
(alignments to Essential Knowledge are
given by the letters in parentheses)

AP CS A Topic Outline

9-12.AP.17 Create computational artifacts using
modular design.

LO 1.2.1 Create a computational artifact for
creative expression (B).

LO 1.2.3 Create a new computational artifact by
combining or modifying existing artifacts (A).

LO 5.1.2 Develop a correct program to solve
problems (B, C).

I. A. Program and class
design

II. A. Implementation
techniques

9-12.AP.18 Systematically design programs for
broad audiences by incorporating
feedback from users.

LO 1.2.5 Analyze the correctness, usability,
functionality, and suitability of computational
artifacts (A–D).

LO 5.1.2 Develop a correct program to solve
problems (G, H).

*

9-12.AP.19 Explain the limitations of licenses
that restrict use of computational
artifacts when using resources such
as libraries.

LO 7.3.1 Analyze the beneficial and harmful
impacts of computing (N–Q).

VI. C. Legal issues and
intellectual property

9-12.AP.20 Iteratively evaluate and refine a
computational artifact to enhance its
performance, reliability, usability, and
accessibility.

LO 1.2.5 Analyze the correctness, usability,
functionality, and suitability of computational
artifacts (A–D).

LO 5.1.2 Develop a correct program to solve
problems (A, H).

III. A. Testing

III. B. Debugging

9-12.AP.21 Design and develop computational
artifacts working in team roles using
collaborative tools.

LO 1.2.4 Collaborate in the creation of
computational artifacts (A, B).

LO 5.1.3 Collaborate to develop a program (C).

*

234 | Appendix California Department of Education

CA CS Standard
Identifier

CA CS Standard AP CSP Learning Objectives
(alignments to Essential Knowledge are
given by the letters in parentheses)

AP CS A Topic Outline

9-12.AP.22 Document decisions made during
the design process using text,
graphics, presentations, and/or
demonstrations in the development
of complex programs.

LO 5.1.2 Develop a correct program to solve
problems (D–F).

*

9-12.IC.23 Evaluate the ways computing
impacts personal, ethical, social,
economic, and cultural practices.

LO 7.3.1 Analyze the beneficial and harmful
impacts of computing (A–Q).

VI. D. Social and ethical
ramifications of computer
use

9-12.IC.24 Identify impacts of bias and equity
deficit on design and implementation
of computational artifacts and apply
appropriate processes for evaluating
issues of bias.

 LO 7.4.1 Explain the connections between
computing and real-world contexts, including
economic, social, and cultural contexts (A, C, D).

VI. D. Social and ethical
ramifications of computer
use

9-12.IC.25 Demonstrate ways a given algorithm
applies to problems across
disciplines.

LO 5.2.1 Explain how programs implement
algorithms (J).

*

9-12.IC.27 Use collaboration tools and methods
to increase connectivity with people
of different cultures and careers.

LO 1.2.4 Collaborate in the creation of
computational artifacts (C, E).

LO 5.1.3 Collaborate to develop a program (B, C,
F).

*

9-12.IC.28 Explain the beneficial and harmful
effects that intellectual property laws
can have on innovation.

LO 7.3.1 Analyze the beneficial and harmful
effects of computing (N, O, P, Q).

VI. C. Legal issues and
intellectual property

California Department of Education Appendix | 235

CA CS Standard
Identifier

CA CS Standard AP CSP Learning Objectives
(alignments to Essential Knowledge are
given by the letters in parentheses)

AP CS A Topic Outline

9-12.IC.29 Explain the privacy concerns related
to the collection and generation of
data through automated processes.

LO 3.2.2 Determine how large data sets impact
the use of computational processes to discover
information and knowledge (D).

LO 3.3.1 Analyze how data representation,
storage, security, and transmission of data
involve computational manipulation of
information (A, B, F).

VI. B. Privacy

9-12.IC.30 Evaluate the social and economic
implications of privacy in the context
of safety, law, or ethics.

LO 7.3.1 Analyze the beneficial and harmful
impacts of computing (G, H).

VI. B. Privacy

VI. D. Social and ethical
ramifications of computer
use

9-12S.CS.1 Illustrate ways computing systems
implement logic, input, and output
through hardware components.

LO 2.2.3 Identify multiple levels of abstractions
that are used when writing programs (E–I).

*

9-12S.CS.2 Categorize and describe the different
functions of operating system
software.

* *

9-12S.NI.3 Examine the scalability and
reliability of networks, by describing
the relationship between routers,
switches, servers, topology, and
addressing.

LO 6.2.2 Explain how the characteristics of the
internet influence the systems built on it (A, B).

*

236 | Appendix California Department of Education

CA CS Standard
Identifier

CA CS Standard AP CSP Learning Objectives
(alignments to Essential Knowledge are
given by the letters in parentheses)

AP CS A Topic Outline

9-12S.NI.4 Explain how the characteristics of
the internet influence the systems
developed on it.

LO 6.1.1 Explain the abstractions in the internet
and how the internet functions (A–D, F).

LO 6.2.1 Explain the characteristics of the
internet and the systems built on it (A, D).

LO 6.2.2 Explain how the characteristics of the
internet influence the systems built on it (A–K).

*

9-12S.NI.5 Develop solutions to security threats. LO 6.3.1 Identify existing cybersecurity concerns
and potential options to address these issues
with the internet and the systems built on it (C,
G).

*

9-12S.NI.6 Analyze cryptographic techniques
to model the secure transmission of
information.

LO 6.3.1 Identify existing cybersecurity concerns
and potential options to address these issues
with the internet and the systems built on it (I, K,
L).

*

9-12S.DA.7 Select and use data collection tools
and techniques to generate data
sets.

LO 3.2.2 Determine how large data sets impact
the use of computational processes to discover
information and knowledge (B, C).

*

9-12S.DA.8 Use data analysis tools and
techniques to identify patterns in
data representing complex systems.

LO 3.2.1 Extract information from data to
discover and explain connections or trends (C–F).

*

9-12S.DA.9 Evaluate the ability of models and
simulations to test and support the
refinement of hypotheses.

LO 2.3.2 Use models and simulations to
formulate, refine, and test hypotheses (A–H).

*

California Department of Education Appendix | 237

CA CS Standard
Identifier

CA CS Standard AP CSP Learning Objectives
(alignments to Essential Knowledge are
given by the letters in parentheses)

AP CS A Topic Outline

9-12S.AP.10 Describe how artificial intelligence
drives many software and physical
systems.

* *

9-12S.AP.11 Implement an algorithm that uses
artificial intelligence to overcome a
simple challenge.

* *

9-12S.AP.12 Implement searching and sorting
algorithms to solve computational
problems.

LO 4.1.1 Develop and algorithm for
implementation in a program (A–C).

LO 4.1.2 Express an algorithm in a language (G).

LO 4.2.4 Evaluate algorithms analytically and
empirically for efficiency, correctness, and clarity
(H).

V. B. Searching

V. C. Sorting

9-12S.AP.13 Evaluate algorithms in terms of their
efficiency.

LO 4.2.1 Explain the difference between
algorithms that run in a reasonable time and
those that do not run in a reasonable time (B, C).

LO 4.2.4 Evaluate algorithms analytically and
empirically for efficiency, correctness, and clarity
(D, G).

III. E. Algorithm analysis

9-12S.AP.14 Compare and contrast fundamental
data structures and their uses.

LO 5.3.1 Use abstraction to manage complexity
in programs (K, L).

IV. D. Lists

IV. E. Arrays

9-12S.AP.15 Demonstrate the flow of execution of
a recursive algorithm.

* II. B. Programming
constructs

238 | Appendix California Department of Education

CA CS Standard
Identifier

CA CS Standard AP CSP Learning Objectives
(alignments to Essential Knowledge are
given by the letters in parentheses)

AP CS A Topic Outline

9-12S.AP.16 Analyze a large-scale computational
problem and identify generalizable
patterns or problem components
that can be applied to a solution.

LO 2.2.1 Develop an abstraction when writing a
program or creating other computational artifacts
(A, B, C).

*

9-12S.AP.17 Construct solutions to problems
using student-created components,
such as procedures, modules, and/
or objects.

LO 5.3.1 Use abstraction to manage complexity
in programs (A–G, L).

I. A. Program and class
design

9-12S.AP.18 Demonstrate code reuse by creating
programming solutions using libraries
and APIs.

LO 5.3.1 Use abstraction to manage complexity
in programs (M, N, O).

I. A. Program and class
design

9-12S.AP.19 Plan and develop programs for broad
audiences using a specific software
life cycle process.

LO 5.1.2 Develop a correct program to solve
problems (A).

*

9-12S.AP.20 Develop programs for multiple
computing platforms.

* *

9-12S.AP.21 Identify and fix security issues
that might compromise computer
programs.

* *

9-12S.AP.22 Develop and use a series of test
cases to verify that a program
performs according to its design
specifications.

LO 1.2.5 Analyze the correctness, usability,
functionality, and suitability of computational
artifacts (A, B).

III A. Testing

California Department of Education Appendix | 239

CA CS Standard
Identifier

CA CS Standard AP CSP Learning Objectives
(alignments to Essential Knowledge are
given by the letters in parentheses)

AP CS A Topic Outline

9-12S.AP.23 Modify an existing program to
add additional functionality and
discuss intended and unintended
implications.

LO 5.1.2 Develop a correct program to solve
problems (B, C).

*

9-12S.AP.24 Evaluate key qualities of a program
through a process such as a code
review.

LO 5.4.1 Evaluate the correctness of a program
(A, B, C).

*

9-12S.AP.25 Use version control systems,
integrated development environments
(IDEs), and collaborative tools and
practices (e.g., code documentation)
while developing software within a
group.

LO 1.2.1 Create a computational artifact for
creative expression (C).

LO 1.2.4 Collaborate in the creation of
computational artifacts (A, B).

LO 5.1.3 Collaborate to develop a program (C, D,
E, F).

*

9-12S.AP.26 Compare multiple programming
languages and discuss how their
features make them suitable for
solving different types of problems.

LO 2.2.3 Identify multiple levels of abstractions
that are used when writing programs (A, B).

*

9-12S.IC.27 Evaluate computational artifacts with
regard to improving their beneficial
effects and reducing harmful effects
on society.

LO 5.1.1 Develop a program for creative
expression, to satisfy personal curiosity, or to
create new knowledge (E, F).

VI. D. Social and ethical
ramifications of computer
use

240 | Appendix California Department of Education

CA CS Standard
Identifier

CA CS Standard AP CSP Learning Objectives
(alignments to Essential Knowledge are
given by the letters in parentheses)

AP CS A Topic Outline

9-12S.IC.28 Evaluate how computational
innovations that have revolutionized
aspects of our culture might evolve.

LO 7.1.1 Explain how computing innovations
affect communication, interaction, and cognition
(A–O).

VI. D. Social and ethical
ramifications of computer
use

9-12S.IC.29 Evaluate the impact of equity,
access, and influence on the
distribution of computing resources
in a global society.

LO 7.4.1 Explain the connections between
computing and real-world contexts, including
economic, social, and cultural contexts (A–E).

VI. D. Social and ethical
ramifications of computer
use

9-12S.IC.30 Debate laws and regulations that
impact the development and use of
software.

LO 7.3.1 Analyze the beneficial and harmful
impacts of computing (N–Q).

VI. C. Legal issues and
intellectual property

California Department of Education Appendix | 241

International Baccalaureate

Computer science is considered an experimental science in the
International Baccalaureate (IB) Diploma Programme curriculum,
alongside biology, chemistry, design technology, physics, and
environmental systems and societies (International Baccalaureate
2019). Computer science is offered as a standard level (SL)
course, intended for students with no previous experience with
computer science, and as a higher level (HL) course, intended for
students with some prior exposure to programming. Both the SL
and the HL course emphasize computational thinking and include
the following four topics:

1. System fundamentals

2. Computer organization

3. Networks

4. Computational thinking, problem-solving, and programming

Students at SL and HL will also choose to study one of the
following options:

A. Databases

B. Modeling and simulation

C. Web science

D. Object-oriented programming

The HL course includes three additional topics as more in-depth
content for the selected option:

1. Abstract data structures

2. Resource management

3. Control

There is significant overlap between the IB Diploma Programme
computer science courses and the California computer science
standards, but neither the SL nor the HL course addresses
the full set of California computer science standards. The IB
courses include some objectives that are covered in the K–8
computer science standards and explore topics, such as system
fundamentals and computer organization, in much greater depth.
The IB syllabus changes frequently—teachers should attend an
IB workshop to obtain detailed curriculum information. A general
overview of the degree of alignment between the IB course topics
and the CA CS standards is provided in the table below.

242 | Appendix California Department of Education

Key: Asterisk symbol (*) = Not found.

IB CS Topic Degree of Alignment with
CA CS Standards

Example 9–12 CA CS Standards
Aligned to CS Topic

Topic 1: System fundamentals Low or none *

Topic 2: Computer organization Moderate 9-12S.CS.1, 9-12.CS.2

Topic 3: Networks Moderate 9-12.NI.4, 9-12S.NI.3

Topic 4: Computational thinking, problem-
solving, and programming

Moderate 9-12.AP.12, 9-12S.AP.10,

9-12S.AP.11, 9-12S.AP.12, 9-12S.AP.13

Topic 5: Abstract data structures High 9-12.AP.13, 9-12S.AP.14, 9-12S.AP.15

Topic 6: Resource management Low or none *

Topic 7: Control Low or none *

Option A: Databases Low or none *

Option B: Modeling and simulation Moderate 9-12.DA.10, 9-12S.DA.7, 9-12S.DA.8

Option C: Web science Moderate 9-12.NI.5, 9-12S.NI.4

Option D: Object-oriented programming High 9-12.AP.16, 9-12.AP.17, 9-12S.AP.16, 9-12S.
AP.17, 9-12S.AP.18

Case study Low or none *

California Department of Education Appendix | 243

Glossary
The glossary includes definitions of terms used in the statements in the framework. These terms are defined for readers of the framework
and are not necessarily intended to be the definitions or terms that are seen by students. Definitions are adapted from the K–12 Computer
Science Framework glossary at https://k12cs.org/glossary.

Term Definition

abstraction (process): The process of hiding detail associated with an idea or phenomenon to reduce complexity and
facilitate communication. By hiding some details, abstraction allows one to focus on relevant details without
including background details or explanations.

(product): A representation of an idea or phenomenon that hides details irrelevant to the question at hand.
Abstractions can be associated with levels, where abstractions that are used to define other abstractions are
commonly referred to as lower level abstractions, and abstractions built upon lower level abstractions are
considered higher level abstractions.

accessibility The extent to which products, devices, services, or environments can be used by people who experience
disabilities. Accessibility standards that are generally accepted by professional groups include the Web Content
Accessibility Guidelines (WCAG) 2.0, Accessible Rich Internet Applications (ARIA) standards, Section 508
Standards, and Section 225 Guidelines for Telecommunications Equipment (Wikipedia n.d.).

algorithm A sequence of instructions designed to complete a specific task.

analog The defining characteristic of analog data is that it is represented in a continuous, physical way. Whereas digital
data is represented in discrete binary form, analog data uses continuous representations, such as the surface
grooves on a vinyl record, the magnetic tape of a VCR cassette, or electromagnetic waves sent to an analog
speaker (Techopedia 2019).

app An app is computer software, or a program, most commonly a small, specific one used for mobile devices. The
term app originally referred to any mobile or desktop application, but as more app stores have emerged to
sell mobile apps to smartphone and tablet users, the term has evolved to refer to small programs that can be
downloaded and installed all at once. Also known as a mobile application (Techopedia 2019).

https://k12cs.org/glossary

244 | Appendix California Department of Education

Term Definition

Application Programming
Interface (API)

A set of commands, procedures, protocols, and objects that programmers can use to create or interact with
software (Tech Terms 2019). A good API makes it easier to develop a computer program by providing building
blocks for common operations, which are then put together by the programmer. Documentation for the API is
usually provided to facilitate usage.

argument A value passed to a procedure and stored in a parameter.

See also parameter.

array Arrays are commonly used in computer programs to organize data in a sequence, where individual data values
can be easily accessed and/or modified. Each element in an array is identified by an index.

artifact See computational artifact.

audience Expected end users of a computational artifact or system.

See also end user.

authentication The verification of the identity of a person or process (FOLDOC 2019).

automate To run or operate (something, such as a factory or system) by using machines, computers, etc., instead of
people to do the work (Merriam-Webster 2019).

automation The creation of technology and its application to perform tasks that were previously performed by humans
(Techopedia 2019).

bandwidth The maximum data transfer rate of a network or internet connection. It measures how much data can be sent
over a specific connection in a given amount of time (Tech Terms 2019).

binary A numeric system that only uses two digits: 0 and 1. Computers operate in binary, meaning data is represented
and calculations are performed using only zeros and ones. Binary is also called “base 2” (Tech Terms 2019).

biometric verification An authentication process used to confirm a claimed identity through uniquely identifiable biological traits,
such as fingerprints and hand geometry. It is designed to allow a user to prove his or her identity by supplying
a biometric sample and associated unique identification code in order to gain access to a secure environment
(Techopedia 2019).

California Department of Education Appendix | 245

Term Definition

Boolean A type of data or expression with two possible values: true and false (FOLDOC, n.d.).

bug An error in a software program. It may cause a program to unexpectedly quit or behave in an unintended
manner (Tech Terms 2019). The process of finding and correcting errors (bugs) is called debugging.

See also debugging.

camel case Camel case (also “CamelCase” or “dromedary case”) is a naming convention in which the first letter of each
word in a compound word is capitalized. Some programming languages do not allow the use of spaces
in the names of procedures, variables, or other entities. Therefore, programmers often use CamelCase
to define portions of their code. For example, employeeID, employeeFirstName, employeeLastName, and
employeeAddress (Tech Terms 2019).

cloud;
cloud computing

Cloud computing is a type of internet-based computing that relies on sharing computer resources. Instead of
installing software applications on local servers or devices, the applications and services are offered over the
internet, from data centers all over the world. These data centers are collectively referred to as the “cloud” (Tech
Terms 2019).

code code (n): Any set of instructions expressed in a programming language (TechTarget 2019).

code (v): To write instructions for a computer using a programming language (TechTarget 2019). See also
program; programming.

collection A set of variables used to store and process related data. The data is accessible through the use of a single
variable and functionality defined for that particular collection. Examples of collections include arrays, sets, and
lists.

comment In HTML, a comment is information designers can add to the HTML for reference. Comments are not viewed by
users within a browser, but rather are only visible when viewing the HTML source code. HTML comments are
written as the following, where you add your own textual note between the characters:

<!-- your information here -->

(Webopedia 2019).

246 | Appendix California Department of Education

Term Definition

complexity The minimum amount of resources, such as memory, time, or messages, needed to solve a problem or execute
an algorithm (Black 2004).

component Computers are made up of many different parts, or components, such as a motherboard and hard drive. Each
of these parts is made up of smaller parts, also called components. For example, a motherboard includes
a circuit board, electrical connectors, and resistors. These and other components work together to make the
motherboard function (Tech Terms 2019).

compose To make or create by putting together parts of elements (The Free Dictionary n.d.)

See also decompose.

compound conditional Compound conditionals combine two or more conditions in a logical relationship, such as AND, OR, and NOT.

See also conditional.

computational Relating to computers or computing methods.

computational artifact Anything created by a human using a computational thinking process and a computing device. A computational
artifact can be, but is not limited to, a program, image, audio, video, presentation, or web page file (College
Board 2016, p. 11).

computational model;
computational modeling

Computational modeling is the use of computers to simulate and study the behavior of complex systems. A
computational model contains numerous variables that characterize the system being studied. Simulation is
done by adjusting each of these variables alone or in combination and observing how the changes affect the
outcomes. The results of model simulations help researchers make predictions about what will happen in the
real system that is being studied in response to changing conditions (NIBIB 2016).

California Department of Education Appendix | 247

Term Definition

computational thinking The human ability to formulate problems so that their solutions can be represented as computational steps
or algorithms to be executed by a computer (Lee 2016, p.3). Computational thinking plays a key role in the
computer science practices described in the K–12 Computer Science Framework (2016) and encompasses the
following practices:

3. Recognizing and Defining Computational Problems

4. Developing and Using Abstractions

5. Creating Computational Artifacts

6. Testing and Refining Computational Artifacts

computer A machine or device that performs processes, calculations, and operations based on instructions provided by a
software or hardware program (Techopedia 2019).

See also computing device.

computer science The study of computers and algorithmic processes, including their principles, their hardware and software
designs, their implementation, and their impact on society (Tucker et al. 2006).

computing Any goal-oriented activity requiring, benefiting from, or creating computers. Computing is a family of disciplines
that includes computer science, electrical engineering, and information systems (Tucker et al. 2006).

computing device A physical device that uses hardware and software to receive, process, and output information. Computers,
mobile phones, and computer chips inside appliances are all examples of computing devices.

computing system A collection of one or more computers or computing devices, together with their hardware and software,
integrated for the purpose of accomplishing shared tasks. Although a computing system can be limited
to a single computer or computing device, it more commonly refers to a collection of multiple connected
computers, computing devices, and hardware.

248 | Appendix California Department of Education

Term Definition

conditional A programming language feature that determines the flow of control of a program. A conditional can appear
in the form of a conditional statement (if–then), conditional expression (Boolean expression), or conditional
construct (functional programming).

configuration (process): Defining the options that are provided when installing or modifying hardware and software or the
process of creating the configuration (product) (TechTarget 2019).

(product): The specific hardware and software details that tell exactly what the system is made up of,
especially in terms of devices attached, capacity, or capability (TechTarget 2019).

connection A physical or wireless attachment between multiple computing systems, computers, or computing devices.

connectivity A program’s or device’s ability to link with other programs and devices (Webopedia 2019).

control (in programming): The use of elements of programming code to direct which actions take place and the order
in which they take place.

control structure A programming (code) structure that implements control. Conditionals and loops are examples of control
structures.

Creative Commons license One of several public copyright licenses that enable the free distribution of an otherwise copyrighted work.
A Creative Commons (CC) license is used when an author wants to give people the right to share, use, and
build upon a work that they have created. A CC license provides an author flexibility (for example, they might
choose to allow only non-commercial uses of their own work) and protects the people who use or redistribute
an author’s work from concerns of copyright infringement as long as they abide by the conditions that are
specified in the license by which the author distributes the work. (Wikipedia n.d.).

See also license.

cryptography Cryptography is a technique for transforming information on a computer in such a way that it becomes
unreadable by anyone except authorized parties. Cryptography is useful for supporting secure communication
of data across networks. Examples of cryptographic methods include hashing, symmetric encryption/
decryption (private key), and asymmetric encryption/decryption (public key/private key).

California Department of Education Appendix | 249

Term Definition

culture;
cultural practices

culture: A human institution manifested in the learned behavior of people, including their specific belief
systems, language(s), social relations, technologies, institutions, organizations, and systems for using and
developing resources (NCSS 2013).

cultural practices: The displays and behaviors of a culture.

cybersecurity The protection against access to, or alteration of, computing resources through the use of technology,
processes, and training (TechTarget 2019).

data The raw representation of variables. Data can be collected and used for reference or analysis. Data can be
digital or non-digital and can be in many forms, including numbers, text, show of hands, images, sounds, or
video (Computing at School 2013).

data structure A format for storing and accessing data within a computer program for the appropriate access and
modification of the data.

data type A classification of data that is distinguished by its attributes and the types of operations that can be performed
on it. Some common data types are integer, string, Boolean (true or false), and floating-point.

debugging The process of finding and correcting errors (bugs) in programs (quoted in Massachusetts Department of
Elementary and Secondary Education 2016, 37).

See also bug.

declare a variable In computer programming, declaring a variable determines the name and, in some programming languages, its
data type. Programmers declare variables by writing the name of the variable into code (Techopedia 2019).

See also variable.

decompose;
decomposition

decompose (v): To break down into components.

decomposition (n): The act of breaking down a problem or system into components (quoted in Massachusetts
Department of Elementary and Secondary Education 2016, 37).

250 | Appendix California Department of Education

Term Definition

denial-of-service (DoS)
attack

A cyberattack where the perpetrator seeks to make a computer system unavailable to its intended users. Denial
of service is typically accomplished by flooding the computer system with excessive and/or invalid requests in
an attempt to overload the system and prevent some or all legitimate requests from being fulfilled (Techopedia
2019).

design The creation of a plan or convention for the construction of an object, system, or measurable human interaction
(as in pseudocode and prototypes) (Wikipedia n.d.).

device A unit of physical hardware that provides one or more computing functions within a computing system. It can
provide input to the computer, accept output, or both (Techopedia 2019).

digital A characteristic of electronic technology that uses binary digits 0 and 1, to generate, store, and process data.

digital citizenship The norms of appropriate, responsible behavior with regard to the use of technology (Massachusetts
Department of Elementary and Secondary Education 2016, 37).

efficiency A measure of the amount of resources an algorithm uses to find an answer. It is usually expressed in terms
of the theoretical computations, the memory used, the number of messages passed, the number of disk
accesses, etc. (Black 2004).

encapsulation The technique of combining data and the procedures that act on it to create a type (FOLDOC 2019).

See also structure.

encoding The process of converting data into a format required for information processing. In computer technology,
encoding is the process of applying a specific code, such as letters, symbols, and/or numbers, to data for
conversion (Techopedia 2019).

encryption The conversion of electronic data into another form, called ciphertext, which cannot be easily understood by
anyone except authorized parties (TechTarget 2019).

end user (or user) A person for whom a hardware or software product is designed (as distinguished from the developers)
(TechTarget 2019).

See also audience.

California Department of Education Appendix | 251

Term Definition

evaluation 1. Converting a programming statement into a value.

2. The process of examining the extent to which a computational artifact meets specified properties and goals
(FOLDOC 2019).

event Any identifiable occurrence that has significance for system hardware or software. User-generated events
include keystrokes and mouse clicks; system-generated events include program loading and errors (TechTarget
2019).

event handler A procedure that specifies what should happen when a specific event occurs.

execute; execution execute: To carry out (or “run”) an instruction or set of instructions (program, app, etc.).

execution: The process of executing an instruction or set of instructions (FOLDOC 2019).

firewall A network security system that monitors and controls incoming and outgoing network traffic based on
predetermined security rules. A firewall typically establishes a barrier between a trusted internal network and
an untrusted outside network, such as the Internet. Firewalls can be implemented as hardware, software, or a
combination of both (Webopedia 2019).

floating point number The computing term used for representing non-integer numbers, such as numbers with decimal points.

function See definition for procedure.

garbage collection In computer science, garbage collection (GC) is a form of automatic memory management. The garbage
collector, or just collector, attempts to reclaim garbage, or memory occupied by objects that are no longer in
use by the program (Wikipedia n.d.)

hardware The physical components that make up a computing system, computer, or computing device (quoted in
Massachusetts Department of Elementary and Secondary Education 2016, 38).

hierarchy An organizational structure in which items are ranked according to levels of importance (TechTarget 2019).

human–computer
interaction (HCI)

The study of how people interact with computers and to what extent computing systems are or are not
developed for successful interaction with human beings (TechTarget 2019).

252 | Appendix California Department of Education

Term Definition

identifier The programmer-defined, unique name of a program element (such as a variable or procedure). An identifier
name should indicate the meaning and usage of the element being named (Techopedia 2019).

implementation The process of expressing the design of a solution in a programming language (code) that can be made to run
on a computing device.

input Data sent to a computer program.

integrated development
environment (IDE)

A software system for supporting the process of writing software. Such a system may include a syntax-directed
editor, graphical tools for program entry, and integrated support for compiling and running the program and
relating compilation errors back to the source (FOLDOC 2019).

integrity The overall completeness, accuracy, and consistency of data (Techopedia 2019).

internet The global collection of computer networks and their connections, all using shared protocols to communicate
(Computing at School 2013, 27).

Internet Protocol (IP)
address

A unique numerical label that is used to identify and locate each device connected to the internet (Tech Terms
2019).

iterative Involving the repeating of a process with the aim of approaching a desired goal, target, or result (quoted in
Massachusetts Department of Elementary and Secondary Education 2016, 39).

library A collection of resources used by computer programs. These resources can include message templates, pre-
written code, and specifications. The distinguishing feature is that a library is organized for the purposes of
being reused by independent programs or sub-programs (Wikipedia n.d.).

license An official permission or permit to do, use, or own something (as well as the document of that permission or
permit). A public license is a license by which a copyright holder can grant additional copyright permissions to
any and all persons in the general public as licensees. By applying a public license to a work, copyright holders
give permission for others to copy or change their work in ways that would otherwise infringe copyright law
(Wikipedia n.d.).

See also Creative Commons license.

California Department of Education Appendix | 253

Term Definition

list A data structure holding many values, possibly of different types, which is usually accessed sequentially,
working from the head to the end of the tail—an “ordered list” (FOLDOC 2019).

loop A programming structure that repeats a sequence of instructions as long as a specific condition is true (Tech
Terms 2019).

Media Access Control
(MAC) address

A hardware identification number that uniquely identifies each device on a network. The MAC address is
manufactured into every network card, such as an ethernet card or a Wi-Fi card, and therefore cannot be
changed (Tech Terms 2019).

memory Internal storage hardware used by computers to store and access data.

model A representation (abstraction) of some part of a problem or a system (quoted in Massachusetts Department of
Elementary and Secondary Education 2016, 39).

Note: This definition differs from that used in science.

modularity The characteristic of a software or web application that has been divided (decomposed) into smaller modules.
An application might have several procedures that are called from inside its main procedure. Existing
procedures could be reused by recombining them in a new application (Techopedia 2019).

module Any of a number of distinct but interrelated units from which a program may be built up or into which a
complex activity may be analyzed. A software component or part of a program that contains one or more
procedures. One or more independently developed modules make up a program (Techopedia).

nest(ed) To embed one object in another object. Nesting is quite common in programming, where different logic
structures sequence, selection and loop) are combined (i.e., nested in one another). For example, nested loops
are loops placed within loops, and nested conditionals allow the result of one conditional to lead to another
(Webopedia 2019).

network A group of computing devices (personal computers, phones, servers, switches, routers, etc.) connected by
cables or wireless media for the exchange of information and resources.

254 | Appendix California Department of Education

Term Definition

object;

object-oriented
programming (OOP)

Object-oriented programming (OOP) refers to a type of computer programming (software design) in which
programmers define data types that encapsulate both data and operations (procedures) that are applied to
the data structure. In this way, the data structure becomes an object that includes both data and procedures.
Programmers can create relationships between one object and another. For example, objects can inherit
characteristics from other objects (Webopedia 2019).

operation An action, resulting from a single instruction, that changes the state of data (Free Dictionary n.d.).

packet The unit of data sent over a network (Tech Terms 2019).

pair programming Pair programming is a software development technique in which two programmers work together using a
single computer. One programmer acts as the driver by entering code, while the second programmer acts as
the navigator, providing insight and feedback on the code as it is entered. The programmers switch roles on a
regular basis.

See also program; programming.

parameter A special kind of variable used in a procedure to refer to one of the pieces of data received as input by the
procedure (quoted in Massachusetts Department of Elementary and Secondary Education 2016, 39).

phishing The attempt to obtain sensitive information, such as usernames, passwords, and credit card details, by
disguising as a trustworthy entity in an electronic communication. Phishing is typically carried out by email
or instant messaging, and often directs users to enter personal information at a fake website which looks
identical to the legitimate one except for the URL (Wikipedia n.d.).

physical security token Devices used to gain access to an electronically restricted resource. The token is used in addition to, or in
place of, a password. It acts like an electronic key to access something. An example of a physical security
token is a wireless keycard opening a locked door (Wikipedia n.d.).

piracy The illegal copying, distribution, or use of software (TechTarget 2019).

California Department of Education Appendix | 255

Term Definition

procedure An independent code module that fulfills some concrete task and is referenced within a larger body of program
code. The fundamental role of a procedure is to offer a single point of reference for some small goal or task
that the developer or programmer can trigger by invoking the procedure itself (Techopedia 2019).

Note: In these standards, procedure is used as a general term that may refer to an actual procedure or a
method, function, or module of any other name by which modules are known in other programming languages.

process A series of actions or steps taken to achieve a particular outcome (Oxford Dictionaries 2019).

program; programming program (n): A set of instructions that the computer executes to achieve a particular objective (quoted in
Massachusetts Department of Elementary and Secondary Education 2016, 40).

program (v): To produce a program by programming.

programming: The craft of analyzing problems and designing, writing, testing, and maintaining programs to
solve them (quoted in Massachusetts Department of Elementary and Secondary Education 2016, 40).

protocol The special set of rules used by endpoints in a telecommunication connection when they communicate.
Protocols specify interactions between the communicating entities (TechTarget 2019).

prototype An early approximation of a final product or information system, often built for demonstration purposes
(TechTarget 2019).

pseudocode An informal high-level description of a computer program or other algorithm (Wikipedia n.d.). Pseudocode
does not require strict syntax and uses natural language. The purpose of using pseudocode is that it is easier
for people to understand than conventional programming language code. It is commonly used in computer
program development for sketching out the structure of the program before actual coding takes place
(TechTarget 2019).

public key encryption An encryption technique that uses pairs of keys: public keys, which may be widely known, and private keys,
which are known only to the owner. In a public key encryption system, any sender can encrypt a message using
the public key of the receiver, but the message can only be decrypted with the receiver’s private key (Wikipedia
n.d.).

256 | Appendix California Department of Education

Term Definition

ransomware A type of malicious software that blocks access to a victim’s computer or certain files unless a ransom is paid
(Wikipedia n.d.).

recursion; recursive
procedures

A powerful problem-solving approach where the problem solution is built on solutions of smaller instances of
the same problem. A base case, which returns a result without referencing itself, must be defined, otherwise
infinite recursion will occur.

Procedures that incorporate recursion are called recursive procedures.

See also procedure.

redundancy A system design in which a component is duplicated, so if it fails, there will be a backup (TechTarget 2019).

reliability An attribute of any system that consistently produces the same results given the same configuration, preferably
meeting or exceeding its requirements (FOLDOC 2019).

remix The process of creating something new from something old. Originally a process that involved music, remixing
involves creating a new version of a program by recombining and modifying parts of existing programs, and
often adding new pieces, to form new solutions (Kafai and Burke 2014).

router A device or software that determines the path that data packets travel from source to destination (TechTarget
2019).

scalability The capability of a network or a program to handle a growing amount of work or its potential to be enlarged to
accommodate that growth (Wikipedia n.d.).

scrape a web page Scraping a web page is the process of automatically mining data or collecting information from the World Wide
Web. Current web scraping solutions range from the ad-hoc, requiring human effort, to fully automated systems
that are able to convert entire web sites into structured information, with limitations (Wikipedia n.d.).

security See cybersecurity.

server A computer program or device that provides services to other computer programs or devices (TechTarget 2019).

set A data type that can store a collection of values, without any particular order, and no repeated values
(Wikipedia n.d.).

California Department of Education Appendix | 257

Term Definition

simulate; simulation simulate (v): To imitate the operation of a real-world process or system.

simulation (n): Imitation of the operation of a real-world process or system (Massachusetts Department of
Elementary and Secondary Education 2016, 40).

social engineering A non-technical method of breaking into a secured computer system. Victims of social engineering are tricked
into releasing information that they do not realize will be used to attack a computer network. Phishing is a type
of security attack that relies on social engineering (Techopedia 2019).

See also phishing.

software Programs that run on a computing system, computer, or other computing device.

spyware Software that aims to gather information about a person or organization without their knowledge, that may
send such information to another entity without the consumer’s consent, or that asserts control over a device
without the consumer’s knowledge (Wikipedia n.d.).

storage (place) A place, usually a device, into which data can be entered, in which the data can be held, and from
which the data can be retrieved at a later time (FOLDOC 2019).

(process) A process through which digital data is saved within a data storage device by means of computing
technology. Storage is a mechanism that enables a computer to retain data, either temporarily or permanently
(Techopedia 2019).

storyboard A storyboard is a graphic organizer in the form of illustrations or images displayed in sequence for the
purpose of pre-visualizing a motion picture, animation, motion graphic, interactive media sequence, or other
computational artifact (Wikipedia n.d.).

string A sequence of letters, numbers, and/or other symbols (TechTarget 2019). A string might represent, for example,
a name, address, or song title. Some procedures commonly associated with strings are length, concatenation,
and substring.

258 | Appendix California Department of Education

Term Definition

structure A general term used in the framework to discuss the concept of encapsulation without specifying a particular
programming methodology.

See also encapsulation.

subroutine See procedure.

switch A high-speed device that receives incoming data packets and redirects them to their destination on a local
area network (LAN) (Techopedia 2019).

system A collection of elements or components that work together for a common purpose (TechTarget 2019).

See also computing system.

test case A set of conditions or variables under which a tester will determine whether the system being tested satisfies
requirements or works correctly (Software Testing Fundamentals 2019).

testing The process of verifying that a software program works as expected (Wikipedia n.d.).

topology The physical and logical configuration of a network; the arrangement of a network, including its nodes and
connecting links. A logical topology is the way devices appear connected to the user. A physical topology is the
way they are actually interconnected with wires and cables (PCMag 2019).

transmission Data transmission is the process of sending digital or analog data over a communication medium to one or
more computing, network, communication or electronic devices (Techopedia 2019).

troubleshooting A systematic approach to problem solving that is often used to find and resolve a problem, error, or fault within
software or a computing system (Techopedia 2019).

two-factor authentication A security system that requires more than one method of authentication from independent categories of
credentials to verify the user’s identity for a login or other transaction. Multi-factor authentication (which
includes two-factor authentication) combines two or more independent credentials: what the user knows
(password), what the user has (physical security token), and what the user is (biometric verification) (TechTarget
2019).

California Department of Education Appendix | 259

Term Definition

unplugged An approach to teaching computer science without computers where concepts are presented through engaging
activities and puzzles by using cards, crayons, and active playing (Hazzan, Lapidot, and Ragonis 2015, 110).

user See end user.

variable A memory location that stores a value. A variable is associated with a symbolic name (or identifier) and a
data type. Variables are not just used for numbers; they can also hold text, including whole sentences (strings)
or logical values (true or false). The value of a variable is normally changed during the course of program
execution (Computing at School 2013; Reges and Stepp 2014; Techopedia 2019; Wikipedia n.d.).

Note: This definition differs from that used in math and statistics.

See also declare a variable.

version control software Version control is used to manage multiple versions of computer files and programs. Version control software
provides two primary data management capabilities: It allows users to (1) lock files so they can only be edited
by one person at a time, and (2) track changes to files (TechTerms 2019).

virus A type of malicious software program that, when executed, replicates itself by modifying other computer
programs and inserting its own code. When this replication succeeds, the affected computers are then said to
be “infected” with a computer virus (Wikipedia n.d.).

web filter A program that can screen an incoming web page to determine whether some or all of it should not be
displayed to the user. The filter checks the origin or content of a web page against a set of rules provided by
the company or person who installed the web filter. A web filter allows an enterprise or individual to block out
pages from websites that are likely to include objectionable content (TechTarget 2019).

worm A type of computer virus that replicates itself to spread to uninfected computers, but does not alter any files
on the computer. However, worms can still cause havoc by multiplying so many times that it takes up all the
computer’s available memory or hard disk space (Tech Terms 2019).

260 | Appendix California Department of Education

References
Some definitions came directly from these sources, while others were
excerpted or adapted to include content relevant to this framework.

Alliance for California Computing Education for Students and
Schools. 2019. Frequently Asked Questions: Computer Science
and Science. http://access-ca.org/frequently-asked-questions-
computer-science-and-science/.

Black, P. E. 2004. https://xlinux.nist.gov/dads/.

Center for Applied Special Technology (CAST). 2019. The
UDL Guidelines. https://udlguidelines.cast.org/?utm_
medium=web&utm_campaign=none&utm_source=cast-about-
udl.

Computing at School. 2013. Computing in the national curriculum:
A guide for primary teachers. Belford, UK: Newnorth Print.
https://www.computingatschool.org.uk/resource-library/2014/
september/computing-in-the-national-curriculum-a-guide-for-
primary-teachers.

College Board. 2016. AP Computer Science Principles. New York,
NY: College Board. https://secure-media.collegeboard.org/
digitalServices/pdf/ap/ap-computer-science-principles-course-
and-exam-description.pdf.

The Free Dictionary. n.d. https://www.thefreedictionary.com/.

Free On-line Dictionary of Computing (FOLDOC). n.d.
https://foldoc.org.

Hazzan, O., T. Lapidot, and N. Ragonis. 2015. Guide to Teaching
Computer Science: An Activity-Based Approach. 2nd ed., 2014
edition. London: Springer.

International Baccalaureate. 2019. Computer Science. https://
www.ibo.org/programmes/diploma-programme/curriculum/
sciences/computer-science/.

Israel, M., T. A. Lash, and G. Jeong. 2017. Utilizing the Universal
Design for Learning Framework in K-12 Computer Science
Education. Project TACTIC: Teaching All Computational Thinking
through Inclusion and Collaboration. Adapted from University
of Illinois, Creative Technology Research Lab website: https://
CTRL.education.illinois.edu/TACTICal.html.

K–12 Computer Science Framework. 2016. https://k12cs.org/
wp-content/uploads/2016/09/K%E2%80%9312-Computer-
Science-Framework.pdf.

K–12 Computer Science Framework. n.d. Glossary. https://k12cs.
org/glossary.

Kafai, Y. and Q. Burke. 2014. Connected Code: Why Children Need
to Learn Programming. Cambridge, MA: MIT Press.

Lee, I. 2016. “Reclaiming the Roots of CT.” CSTA Voice: The Voice of
K–12 Computer Science Education and Its Educators, 12 (1),
3–4. https://d-miller.github.io/DRK12/topic1/2301.pdf.

http://access-ca.org/frequently-asked-questions-computer-science-and-science/
http://access-ca.org/frequently-asked-questions-computer-science-and-science/
https://xlinux.nist.gov/dads/
https://udlguidelines.cast.org/?utm_medium=web&utm_campaign=none&utm_source=cast-about-udl
https://udlguidelines.cast.org/?utm_medium=web&utm_campaign=none&utm_source=cast-about-udl
https://udlguidelines.cast.org/?utm_medium=web&utm_campaign=none&utm_source=cast-about-udl
https://www.computingatschool.org.uk/resource-library/2014/september/computing-in-the-national-curriculum-a-guide-for-primary-teachers
https://www.computingatschool.org.uk/resource-library/2014/september/computing-in-the-national-curriculum-a-guide-for-primary-teachers
https://www.computingatschool.org.uk/resource-library/2014/september/computing-in-the-national-curriculum-a-guide-for-primary-teachers
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/ap/ap-computer-science-principles-course-and-exam-description.pdf
https://www.thefreedictionary.com/
https://foldoc.org
https://www.ibo.org/programmes/diploma-programme/curriculum/sciences/computer-science/
https://www.ibo.org/programmes/diploma-programme/curriculum/sciences/computer-science/
https://www.ibo.org/programmes/diploma-programme/curriculum/sciences/computer-science/
https://CTRL.education.illinois.edu/TACTICal.html
https://CTRL.education.illinois.edu/TACTICal.html
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://k12cs.org/glossary
https://k12cs.org/glossary
https://d-miller.github.io/DRK12/topic1/2301.pdf

California Department of Education Appendix | 261

Massachusetts Department of Elementary and Secondary
Education. 2016. 2016 Massachusetts Digital Literacy and
Computer Science (DLCS) Curriculum Framework. https://www.
doe.mass.edu/frameworks/dlcs.pdf.

Merriam-Webster. 2019. https://www.merriam-webster.com/.

National Council for the Social Studies (NCSS). 2013. College,
Career, and Civic Life C3 Framework for Social Studies State
Standards: Guidance for enhancing the rigor of K–12 civics,
economics, geography, and history. https://www.socialstudies.
org/system/files/c3/C3-Framework-for-Social-Studies.pdf.

National Institute of Biomedical Imaging and Bioengineering
(NIBIB). 2016. Computational Modeling. https://www.nibib.
nih.gov/science-education/science-topics/computational-
modeling.

Oxford Dictionaries. 2019. https://www.oxforddictionaries.com/us.

Papert, S. 1980. Mindstorms: Children, Computers, and Powerful
Ideas. New York: Basic Books.

PCMag. 2019. https://www.pcmag.com/encyclopedia/
term/46301/logical-vs-physical-topology.

Reges, S. and M. Stepp. 2014. Building Java Programs: A back to
basics approach. Pearson Education.

Software Testing Fundamentals. 2019. https://
softwaretestingfundamentals.com/test-case/.

Tech Terms. 2019. Tech Terms Computer Dictionary. https://
techterms.com/.

Techopedia. 2019. Technology Dictionary. https://www.techopedia.
com/dictionary.

TechTarget. 2019. https://www.techtarget.com/network.[No longer
valid] Tucker, A., D. McCowan, F. Deek, C. Stephenson, J. Jones, and
A.

Verno. 2006. A Model Curriculum for K–12 Computer Science:
Final report of the ACM K–12 task force curriculum committee.
2nd ed. New York, NY: Association for Computing Machinery.

University of California Admissions. n.d. AP credits. https://
admission.universityofcalifornia.edu/counselors/exam-credit/
ap-credits/index.html.

Webopedia. 2019. https://www.webopedia.com.

Wikipedia. n.d. https://www.wikipedia.org.

https://www.doe.mass.edu/frameworks/dlcs.pdf
https://www.doe.mass.edu/frameworks/dlcs.pdf
https://www.merriam-webster.com/
https://www.socialstudies.org/system/files/c3/C3-Framework-for-Social-Studies.pdf
https://www.socialstudies.org/system/files/c3/C3-Framework-for-Social-Studies.pdf
https://www.nibib.nih.gov/science-education/science-topics/computational-modeling
https://www.nibib.nih.gov/science-education/science-topics/computational-modeling
https://www.nibib.nih.gov/science-education/science-topics/computational-modeling
https://www.oxforddictionaries.com/us
https://www.pcmag.com/encyclopedia/term/46301/logical-vs-physical-topology
https://www.pcmag.com/encyclopedia/term/46301/logical-vs-physical-topology
https://softwaretestingfundamentals.com/test-case/
https://softwaretestingfundamentals.com/test-case/
https://techterms.com/
https://techterms.com/
https://www.techopedia.com/dictionary
https://www.techopedia.com/dictionary
https://admission.universityofcalifornia.edu/counselors/exam-credit/ap-credits/index.html
https://admission.universityofcalifornia.edu/counselors/exam-credit/ap-credits/index.html
https://admission.universityofcalifornia.edu/counselors/exam-credit/ap-credits/index.html
https://www.webopedia.com
https://www.wikipedia.org
ABerrios
Cross-Out

Page 262 intentionally blank.

C
alifo

rn
ia C

o
m

p
u

ter S
cien

ce S
ta

n
d

a
rd

s: In
tro

d
u

ctio
n

ISB
N 978-0-8011-1809-8

	Computer Science Standards for California Public SchoolsKindergarten through Grade Twelve
	Publishing Information
	Additional Publications and Educational Resources
	Contents
	A Message from the State Superintendent of Public Instruction and the State Board of Education
	Special Acknowledgements
	Vision
	Creating Computational Artifacts
	Computing Systems
	6-8.CS.2
	Why Computer Science?
	Equity Issues
	Problem Solving and the Four Cs
	Core Practice 1: Equity
	Core Practice 2: Collaboration
	Core Practice 3: Problem Solving
	Core Practice 4: Critical Thinking
	Core Practice 5: Creativity
	Core Practice 6: Creativity
	Core Practice 7: Communication
	What is Computer Science?
	Computer Science Core Concepts
	Core Concept—Computing Systems (CS)
	Subconcept: Devices
	Subconcept: Hardware and Software
	Subconcept: Troubleshooting
	Core Concept—Networks and the Internet (NI)
	Subconcept: Network Communication and Organization
	Subconcept: Cybersecurity
	Core Concept—Data and Analysis (DA)
	Subconcept: Storage
	Subconcept: Collection, Visualization, and Transformation
	Subconcept: Inference and Models
	Core Concept—Algorithms and Programming (AP)
	Subconcept: Algorithms
	Subconcept: Variables
	Subconcept: Control
	Subconcept: Modularity
	Subconcept: Program Development
	Core Concept—Impacts of Computing (IC)
	Subconcept: Culture
	Subconcept: Social Interactions
	Subconcept: Safety, Law, and Ethics
	Computer Science Core Practices
	CORE PRACTICE 1
	Fostering an Inclusive Computing Culture
	CORE PRACTICE 2
	Collaborating Around Computing
	CORE PRACTICE 3
	Recognizing and Defining Computational Problems
	CORE PRACTICE 4
	Developing and Using Abstractions
	CORE PRACTICE 5
	Creating Computational Artifacts
	CORE PRACTICE 6
	Testing and Refining Computational Artifacts
	CORE PRACTICE 7
	Communicating About Computing
	California K–12 Computer Science Standards
	K–2
	K-2.CS.1
	Descriptive Statement
	K-2.CS.2
	Descriptive Statement
	K-2.CS.3
	Descriptive Statement
	K-2.NI.4
	Descriptive Statement
	K-2.NI.5
	Descriptive Statement
	K-2.NI.6
	Descriptive Statement
	K-2.DA.7
	Descriptive Statement
	K-2.DA.8
	Descriptive Statement
	K-2.DA.9
	Descriptive Statement
	K-2.AP.10
	Descriptive Statement
	K-2.AP.11
	Descriptive Statement
	K-2.AP.12
	Descriptive Statement
	K-2.AP.13
	Descriptive Statement
	K-2.AP.14
	Descriptive Statement
	K-2.AP.15
	Descriptive Statement
	K-2.AP.16
	Descriptive Statement
	K-2.AP.17
	Descriptive Statement
	K-2.IC.18
	Descriptive Statement
	K-2.IC.19
	Descriptive Statement
	K-2.IC.20
	Descriptive Statement
	3–5
	3-5.CS.1
	Descriptive Statement
	3-5.CS.2
	Descriptive Statement
	3-5.CS.3
	Descriptive Statement
	3-5.NI.4
	Descriptive Statement
	3-5.NI.5
	Descriptive Statement
	3-5.NI.6
	Descriptive Statement
	3-5.DA.7
	Descriptive Statement
	3-5.DA.8
	Descriptive Statement
	3-5.DA.9
	Descriptive Statement
	3-5.AP.10
	Descriptive Statement
	3-5.AP.11
	Descriptive Statement
	3-5.AP.12
	Descriptive Statement
	3-5.AP.13
	Descriptive Statement
	3-5.AP.14
	Descriptive Statement
	3-5.AP.15
	Descriptive Statement
	3-5.AP.16
	Descriptive Statement
	3-5.AP.17
	Descriptive Statement
	3-5.AP.18
	Descriptive Statement
	3-5.AP.19
	Descriptive Statement
	3-5.IC.20
	Descriptive Statement
	3-5.IC.21
	Descriptive Statement
	3-5.IC.22
	Descriptive Statement
	3-5.IC.23
	Descriptive Statement
	6–8
	6-8.CS.1
	Descriptive Statement
	6-8.CS.2
	Descriptive Statement
	6-8.CS.3
	Descriptive Statement
	6-8.NI.4
	Descriptive Statement
	6-8.NI.5
	Descriptive Statement
	6-8.NI.6
	Descriptive Statement
	6-8.DA.7
	Descriptive Statement
	6-8.DA.8
	Descriptive Statement
	6-8.DA.9
	Descriptive Statement
	6-8.AP.10
	Descriptive Statement
	6-8.AP.11
	Descriptive Statement
	6-8.AP.12
	Descriptive Statement
	6-8.AP.13
	Descriptive Statement
	6-8.AP.14
	Descriptive Statement
	6-8.AP.15
	Descriptive Statement
	6-8.AP.16
	Descriptive Statement
	6-8.AP.17
	Descriptive Statement
	6-8.AP.18
	Descriptive Statement
	6-8.AP.19
	Descriptive Statement
	6-8.IC.20
	Descriptive Statement
	6-8.IC.21
	Descriptive Statement
	6-8.IC.22
	Descriptive Statement
	6-8.IC.23
	Descriptive Statement
	6-8.IC.24
	Descriptive Statement
	9–12
	9-12.CS.1
	Descriptive Statement
	9-12.CS.2
	Descriptive Statement
	9-12.CS.3
	Descriptive Statement
	9-12.NI.4
	Descriptive Statement
	9-12.NI.5
	Descriptive Statement
	9-12.NI.6
	Descriptive Statement
	9-12.NI.7
	Descriptive Statement
	9-12.DA.8
	Descriptive Statement
	9-12.DA.9
	Descriptive Statement
	9-12.DA.10
	Descriptive Statement
	9-12.DA.11
	Descriptive Statement
	9-12.AP.12
	Descriptive Statement
	9-12.AP.13
	Descriptive Statement
	9-12.AP.14
	Descriptive Statement
	9-12.AP.15
	Descriptive Statement
	9-12.AP.16
	Descriptive Statement
	9-12.AP.17
	Descriptive Statement
	9-12.AP.18
	Descriptive Statement
	9-12.AP.19
	Descriptive Statement
	9-12.AP.20
	Descriptive Statement
	9-12.AP.21
	Descriptive Statement
	9-12.AP.22
	Descriptive Statement
	9-12.IC.23
	Descriptive Statement
	9-12.IC.24
	Descriptive Statement
	9-12.IC.25
	Descriptive Statement
	9-12.IC.26
	Descriptive Statement
	9-12.IC.27
	Descriptive Statement
	9-12.IC.28
	Descriptive Statement
	9-12.IC.29
	Descriptive Statement
	9-12.IC.30
	Descriptive Statement
	9–12 Specialty
	9-12S.CS.1
	Descriptive Statement
	9-12S.CS.2
	Descriptive Statement
	9-12S.NI.3
	Descriptive Statement
	9-12S.NI.4
	Descriptive Statement
	9-12S.NI.5
	Descriptive Statement
	9-12S.NI.6
	Descriptive Statement
	9-12S.DA.7
	Descriptive Statement
	9-12S.DA.8
	Descriptive Statement
	9-12S.DA.9
	Descriptive Statement
	9-12S.AP.10
	Descriptive Statement
	9-12S.AP.11
	Descriptive Statement
	9-12S.AP.12
	Descriptive Statement
	9-12S.AP.13
	Descriptive Statement
	9-12S.AP.14
	Descriptive Statement
	9-12S.AP.15
	Descriptive Statement
	9-12S.AP.16
	Descriptive Statement
	9-12S.AP.17
	Descriptive Statement
	9-12S.AP.18
	Descriptive Statement
	9-12S.AP.19
	Descriptive Statement
	9-12S.AP.20
	Descriptive Statement
	9-12S.AP.21
	Descriptive Statement
	9-12S.AP.22
	Descriptive Statement
	9-12S.AP.23
	Descriptive Statement
	9-12S.AP.24
	Descriptive Statement
	9-12S.AP.25
	Descriptive Statement
	9-12S.AP.26
	Descriptive Statement
	9-12S.IC.27
	Descriptive Statement
	9-12S.IC.28
	Descriptive Statement
	9-12S.IC.29
	Descriptive Statement
	9-12S.IC.30
	Descriptive Statement
	References and Attributions
	California Computer Science Standards: Appendix
	Contents
	Guide for Leadership
	Strategies to Support Computer Science Standards Implementation
	Supporting Computer Science through Professional Learning
	Policies to Promote Computer Science
	Guide for Flexible Implementation
	Flexible Implementation Models for Computer Science Standards
	Integrating Computer Science
	Discrete Computer Science
	Guide for Instructional Practices Alignment
	Instructional Practices Alignment Considerations
	Assessment
	Universal Access
	Interdisciplinary Connections
	Practices
	Interdisciplinary Connections to Standards by Grade Band
	Grade levels K–2
	Grade levels 3–5
	Grade levels 6–8
	Grade levels 9–12
	Career Technical Education (CTE) Connections
	CTE Standards for Career Ready Practice
	Information and Communication Technologies Sector
	Other Sectors
	Connections to Postsecondary Education
	California State University/University of California Freshman Minimum Admission Requirements
	Advanced Placement (AP)
	International Baccalaureate
	Glossary
	References

