Skip to main content

Hematopoietic Stem Cell Identification Postirradiation

  • Protocol
  • First Online:
Hematopoietic Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2567))

Abstract

Radiation exposure is particularly damaging to cells of the hematopoietic system, inducing pancytopenia and bone marrow failure. The study of these processes, as well as the development of treatments to prevent hematopoietic damage or enhance recovery after radiation exposure, often require analysis of bone marrow cells early after irradiation. While flow cytometry methods are well characterized for identification and analysis of bone marrow populations in the nonirradiated setting, multiple complications arise when dealing with irradiated tissues. Among these complications is a radiation-induced loss of c-Kit, a central marker for conventional gating of primitive hematopoietic populations in mice. These include hematopoietic stem cells (HSCs), which are central to blood reconstitution and life-long bone marrow function, and are important targets of analysis in these studies. This chapter outlines techniques for HSC identification and analysis from mouse bone marrow postirradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62

    Article  CAS  Google Scholar 

  2. Ikuta K, Weissman IL (1992) Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci U S A 89:1502–1506

    Article  CAS  Google Scholar 

  3. Okada S, Nakauchi H, Nagayoshi K et al (1992) In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80:3044–3050

    Article  CAS  Google Scholar 

  4. Osawa M, Nakamura K, Nishi N, Takahasi N, Tokuomoto Y, Inoue H, Nakauchi H (1996) In vivo self-renewal of c-Kit+ Sca-1+ Lin(low/-) hemopoietic stem cells. J Immunol 156:3207–3214

    CAS  PubMed  Google Scholar 

  5. Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245

    Article  CAS  Google Scholar 

  6. Adolfsson J, Borge OJ, Bryder D, Theilgaard-Monch K, Astrand-Grundstrom I, Sitnicka E, Sasaki Y, Jacobsen SE (2001) Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15:659–669

    Article  CAS  Google Scholar 

  7. Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A 98:14541–14546

    Article  CAS  Google Scholar 

  8. Yang L, Bryder D, Adolfsson J, Nygren J, Mansson R, Sigvardsson M, Jacobsen SE (2005) Identification of Lin(-)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105:2717–2723

    Article  CAS  Google Scholar 

  9. Forsberg EC, Prohaska SS, Katzman S, Heffner GC, Stuart JM, Weissman IL (2005) Differential expression of novel potential regulators in hematopoietic stem cells. PLoS Genet 1(3):e28

    Article  Google Scholar 

  10. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  CAS  Google Scholar 

  11. Ergen AV, Jeong M, Lin KK, Challen GA, Goodell MA (2013) Isolation and characterization of mouse side population cells. Methods Mol Biol 946:151–162

    Article  CAS  Google Scholar 

  12. Mayle A, Luo M, Jeong M, Goodell MA (2013) Flow cytometry analysis of murine hematopoietic stem cells. Cytometry A 83:27–37

    Article  Google Scholar 

  13. Simonnet AJ, Nehme J, Vaigot P, Barroca V, Leboulch P, Tronik-Le Roux D (2009) Phenotypic and functional changes induced in hematopoietic stem/progenitor cells after gamma-ray radiation exposure. Stem Cells 27:1400–1409

    Article  CAS  Google Scholar 

  14. Gazit R, Mandal PK, Ebina W, Ben-Zvi A, Nombela-Arrieta C, Silberstein LE, Rossi DJ (2014) Fgd5 identifies hematopoietic stem cells in the murine bone marrow. J Exp Med 211:1315–1331

    Article  CAS  Google Scholar 

  15. Boggs DR (1984) The total marrow mass of the mouse: a simplified method of measurement. Am J Hematol 16:277–286

    Article  CAS  Google Scholar 

  16. Oguro H, Ding L, Morrison SJ (2013) SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13:102–116

    Article  CAS  Google Scholar 

  17. Mantel CR, O'Leary HA, Chitteti BR, Huang X, Cooper S, Hangoc G, Brustovetsky N, Srour EF, Lee MR, Messina-Graham S, Haas DM, Falah N, Kapur R, Pelus LM, Bardeesy N, Fitamant J, Ivan M, Kim KS, Broxmeyer HE (2015) Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161:1553–1565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DOD partnering grant W1XWH-15-1- 0254/0255, NIH grant HL096305, and NIH T32 training grant HL007910. Flow cytometry was conducted in the Indiana University Melvin and Bren Simon Comprehensive Cancer Center (IUSCCC) Flow Cytometry Resource Facility (FCRF), funded in part by NCI grant P30 CA082709, NIDDK grant U54 DK106846, NIH instrumentation grant 1S10D012270, and the Center of Excellence Grant in Molecular Hematology grant PO1 DK090948.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea M. Patterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Patterson, A.M., Orschell, C.M., Pelus, L.M. (2023). Hematopoietic Stem Cell Identification Postirradiation. In: Pelus, L.M., Hoggatt, J. (eds) Hematopoietic Stem Cells. Methods in Molecular Biology, vol 2567. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2679-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2679-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2678-8

  • Online ISBN: 978-1-0716-2679-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics