Skip to main content
Log in

Using graph centrality as a global index to assess students’ mental model structure development during summary writing

  • Development Article
  • Published:
Educational Technology Research and Development Aims and scope Submit manuscript

Abstract

During reading, students construct mental models of what they read. Summaries can be used to evaluate the latent knowledge structure of these mental models. We used indices from Student Mental Model Analyzer for Research and Teaching (SMART) to explore the potential of a global index, Graph Centrality (GC), as a measure to describe mental model structure and its relation to the quality of student summaries (e.g., the amount of content-coverage). Students (n = 73) in an online graduate-level course wrote and revised summaries of their course readings. Data preview left the total count of 32 cases to evaluate how students’ mental representations changed from initial to final version. These summaries were analyzed using indices derived from the 3S model (surface, structure, semantic) as well as a measure of GC. The results of this initial investigation are promising, demonstrating that Graph Centrality captures important differences in students’ summaries, including revision behaviors to the wholistic structure of mental models, modification trajectories toward a cohesive and solid mental representation that is semantically similar to the expert model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander, P. A. (2003). The development of expertise: The journey from acclimation to proficiency. Educational Researcher, 32(8), 10–14.

    Article  Google Scholar 

  • Alexander, P. A. (2004). A model of domain learning: Reinterpreting expertise as a multidimensional, multistage process. In D. Y. Dai & R. J. Sternberg (Eds.), Motivation, emotion, and cognition: Integrative perspectives on intellectual functioning and development (pp. 273–298). Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.

    Google Scholar 

  • Allen, L. K., Snow, E. L., & McNamara, D. S. (2015). Are you reading my mind? In Proceedings of the fifth international conference on learning analytics and knowledgeLAK’15 (pp. 246–254). New York, USA: ACM Press.

  • Anzai, Y., & Yokoyama, T. (1984). Internal models in physics problem solving. Cognition and Instruction, 1, 397–450.

    Article  Google Scholar 

  • Axelrod, R. (1976). Structure of decision: The cognitive maps of political elites. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of the 52nd annual meeting of the association for computational linguistics (Volume 1: Long Papers) (Vol. 1, pp. 238–247).

  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (2000). Learning and transfer. In How people learn: Brain, mind, experience, and school (pp. 31–78). Washington, DC: National Academy Press.

  • Bransford, J. D., & Franks, J. J. (1972). The abstraction of linguistic ideas. Cognitive Psychology, 2, 331–350.

    Article  Google Scholar 

  • Bransford, J. D., & Johnson, M. K. (1972). Contextual prerequisites for understanding: Some investigations of comprehension and recall. Journal of Verbal Learning and Verbal Behavior, 11(6), 717–726.

    Article  Google Scholar 

  • Chi, M. T. H. (2006). Two approaches to the study of experts’ characteristics. In K. A. Ericsson, N. Charness, P. Feltovich, & R. Hoffman (Eds.), Cambridge handbook of expertise and expert performance (pp. 121–130). Cambridge: Cambridge University Press.

    Google Scholar 

  • Clariana, R. B. (2010). Multi-decision approaches for eliciting knowledge structure. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 41–59). New York: Springer.

    Chapter  Google Scholar 

  • Clariana, R. B., Draper, D., & Land, S. M. (2011). An automated measure of group knowledge structure convergence. Annual meeting of the AECT international convention.

  • Clariana, R. B., & Taricani, E. M. (2010). The consequences of increasing the number of terms used to score open-ended concept maps. International Journal of Instructional Media, 37(2), 218–226.

    Google Scholar 

  • Clariana, R., Wallace, P., & Godshalk, V. (2009). Deriving and measuring group knowledge structure from essays: The effects of anaphoric reference. Educational Technology Research and Development, 57(6), 725–737.

    Article  Google Scholar 

  • Collins, A., & Gentner, D. (1987). How people construct mental models. In D. Holland & N. Quinn (Eds.), Cultural models in language and thought (pp. 243–265). Cambridge, MA: Cambridge University Press.

    Chapter  Google Scholar 

  • Coronges, K. A., Stacy, A. W., & Valente, T. W. (2007). Structural comparison of cognitive associative networks in two populations. Journal of Applied Social Psychology, 37(9), 2097–2129.

    Article  Google Scholar 

  • Crossley, S. A., Kyle, K., & McNamara, D. S. (2016). The tool for the automatic analysis of text cohesion (TAACO): Automatic assessment of local, global, and text cohesion. Behavior Research Methods, 48(4), 1227–1237. https://doi.org/10.3758/s13428-015-0651-7.

    Article  Google Scholar 

  • Crossley, S. A., & McNamara, D. S. (Eds.). (2016). Adaptive educational technologies for literacy instruction. Routledge: Taylor & Francis.

  • Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science (1986-1998), 41(6), 391–407.

    Article  Google Scholar 

  • Duke, N. K., & Pearson, P. D. (2009). Effective practices for developing reading comprehension. Journal of Education, 189(1–2), 107–122.

    Article  Google Scholar 

  • Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques: Promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14(1), 4–58.

    Article  Google Scholar 

  • Fodor, J. A., Bever, T. G., & Garrett, M. F. (1974). The psychology of language: An introduction to psycholinguistics and generative grammar. New York: McGraw-Hill.

    Google Scholar 

  • Fonger, N. L., Stephens, A., Blanton, M., Isler, I., Knuth, E., & Gardiner, A. M. (2018). Developing a learning progression for curriculum, instruction, and student learning: An example from mathematics education. Cognition and Instruction, 36(1), 30–55.

    Article  Google Scholar 

  • Gao, Y., Warner, A., & Passonneau, R. J. (2019). Pyreval: An automated method for summary content analysis. In H. Isahara, B. Maegaard, S. Piperidis, C. Cieri, T. Declerck, K. Hasida, H. Mazo, K. Choukri, S. Goggi, J. Mariani, A. Moreno, N. Calzolari, J. Odijk, et al. (Eds.), LREC 201811th international conference on language resources and evaluation (pp. 3234–3239). (LREC 2018—11th international conference on language resources and evaluation). European Language Resources Association (ELRA).

  • Garnham, A. (1987). Mental models as representations of discourse and text. Chicheser: Ellis Horwood Ltd.

    Google Scholar 

  • Garnham, A. (2001). Mental models and the interpretation of anaphora. Hove, UK: Psychology Press.

    Google Scholar 

  • Gentner, D., Holyoak, K. J., & Kokinov, B. N. (2001). The analogical mind. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Gentner, D., & Medina, J. (1998). Similarity and the development of rules. Cognition, 65, 263–297.

    Article  Google Scholar 

  • Gijbels, D., Dochy, F., den Bossche, P. V., & Segers, M. (2005). Effects of problem-based learning: A meta-analysis from the angle of assessment. Review of Educational Research, 75(1), 27–61.

    Article  Google Scholar 

  • Goldman, S. R., Britt, M. A., Brown, W., Cribb, G., George, M., Greenleaf, C., et al. (2016). Disciplinary literacies and learning to read for understanding: A conceptual framework for disciplinary literacy. Educational Psychologist, 51(2), 219–246.

    Article  Google Scholar 

  • Graesser, A. C., Singer, M., & Trabasso, T. (1994). Constructing inferences during narrative text comprehension. Psychological Review, 101(3), 371–395.

    Article  Google Scholar 

  • Graham, S., MacArthur, C. A., & Fitzgerald, J. (Eds.). (2013). Best practices in writing instruction. NY: Guilford Press.

    Google Scholar 

  • Greeno, J. G. (1989). Situations, mental models, and generative knowledge. In D. Klahr & K. Kotovsky (Eds.), Complex information processing (pp. 285–318). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Hansen, D., Schneiderman, B., & Smith, M. (2010). Analyzing social media networks with NodeXL: Insights from a connected world. Burlington, MA: Morgan Kaufmann.

    Google Scholar 

  • Hay, D. B., & Kinchin, I. M. (2006). Using concept maps to reveal conceptual typologies. Education + Training, 48(2/3), 127–142. https://doi.org/10.1108/00400910610651764.

    Article  Google Scholar 

  • He, Y., Hui, S. C., & Quan, T. T. (2009). Automatic summary assessment for intelligent tutoring systems. Computers & Education, 53(3), 890–899.

    Article  Google Scholar 

  • Helbig, H. (2006). Knowledge representation and the semantics of natural language. Berlin: Springer.

    Google Scholar 

  • Hinze, S. R., Wiley, J., & Pellegrino, J. W. (2013). The importance of constructive comprehension processes in learning from tests. Journal of Memory and Language, 69(2), 151–164. https://doi.org/10.1016/j.jml.2013.03.002.

    Article  Google Scholar 

  • Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity in analogical transfer. Memory & Cognition, 15, 332–340.

    Article  Google Scholar 

  • Ifenthaler, D. (2009). Model-based feedback for improving expertise and expert performance. Technology, Instruction, Cognition and Learning, 7(2), 83–101.

    Google Scholar 

  • Ifenthaler, D. (2014). AKOVIA: Automated Knowledge Visualization and Assessment. Technology, Knowledge and Learning, 19(1–2), 241–248. https://doi.org/10.1007/s10758-014-9224-6.

    Article  Google Scholar 

  • Ifenthaler, D., Masduki, I., & Seel, N. M. (2011). The mystery of cognitive structure and how we can detect it: tracking the development of cognitive structures over time. Instructional Science, 39(1), 41–61.

  • Ifenthaler, D., & Pirnay-Dummer, P. (2014). Model-based tools for knowledge assessment. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (pp. 289–301). Retrieved from http://link.springer.com/chapter/10.1007/978-1-4614-3185-5_23.

  • Johnson, T. E., Pirnay-Dummer, P., Ifenthaler, D., Mendenhall, A., Karaman, S., & Tennenbaum, G. (2011). Text summaries or concept maps: Which better represents reading text conceptualization? Technology, Instruction, Cognition and Learning, 8(3–4), 297–312.

    Google Scholar 

  • Johnson-Laird, P. N. (2005). Mental models and thoughts. In K. J. Holyoak (Ed.), The Cambridge handbook of thinking and reasoning (pp. 185–208). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jonassen, D. H., Beissner, K., & Yacci, M. (1993). Structural knowledge: Techniques for representing, conveying, and acquiring structural knowledge. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Jonassen, D. H., & Cho, Y. H. (2008). Externalizing mental models with mindtools. In D. Ifenthaler, P. Pirnay-Dummer, & J. M. Spector (Eds.), Understanding models for learning and instruction. Essays in Honor of Norbert M. Seel (pp. 145–160). New York: Springer.

    Chapter  Google Scholar 

  • Katz, J. J., & Postal, P. M. (1964). An integrated theory of linguistic descriptions. Cambridge: M.I.T. Press.

    Google Scholar 

  • Kim, M. (2012). Theoretically grounded guidelines for assessing learning progress: Cognitive changes in ill-structured complex problem-solving contexts. Educational Technology Research and Development, 60(4), 601–622. https://doi.org/10.1007/s11423-012-9247-4.

    Article  Google Scholar 

  • Kim, M. (2013). Concept map engineering: Methods and tools based on the semantic relation approach. Educational Technology Research and Development, 61(6), 951–978. https://doi.org/10.1007/s11423-013-9316-3.

    Article  Google Scholar 

  • Kim, M. (2015). Models of learning progress in solving complex problems: Expertise development in teaching and learning. Contemporary Educational Psychology, 42, 1–16. https://doi.org/10.1016/j.cedpsych.2015.03.005.

    Article  Google Scholar 

  • Kim, K. (2017). Graphical interface of knowledge structure: A web-based research tool for representing knowledge structure in text. Technology Knowledge and Learning. https://doi.org/10.1007/s10758-017-9321-4.

    Article  Google Scholar 

  • Kim, K. (2018). An automatic measure of cross-language text structures. Technology, Knowledge and Learning, 23(2), 301–314.

    Article  Google Scholar 

  • Kim, K., & Clariana, R. B. (2017). Text signals influence second language expository text comprehension: Knowledge structure analysis. Educational Technology Research and Development, 65(4), 909–930.

    Article  Google Scholar 

  • Kim, K., Clarianay, R. B., & Kim, Y. (2018). Automatic representation of knowledge structure: enhancing learning through knowledge structure reflection in an online course. Educational Technology Research and Development, 67(1), 105–122.

    Article  Google Scholar 

  • Kim, M., Gaul, C., Kim, S., & Madathany, R. (2019). Advance in detecting key concepts as an expert model: Using Student Mental Model Analyzer for Research and Teaching (SMART). Technology, Knowledge and Learning, 25(4), 953–976.

    Article  Google Scholar 

  • Kim, M., & McCarthy, K. S. (2020). Improving summary writing through formative feedback in a technology-enhanced learning environment. Journal of Computer Assisted Learning. https://doi.org/10.1111/jcal.12516.

    Article  Google Scholar 

  • Kim, M., Zouaq, A., & Kim, S. (2016). Automatic detection of expert models: The exploration of expert modeling methods applicable to technology-based assessment and instruction. Computers & Education, 101, 55–69. https://doi.org/10.1016/j.compedu.2016.05.007.

    Article  Google Scholar 

  • Kinchin, I. M. (2008). The qualitative analysis of concept maps: Some unforeseen consequence and emerging opportunities. In A. J. Cañas, P. Reiska, M. Ahlberg, & J. D. Novak (Eds.), Proceedings of the 3rd international conference on concept mapping. Tallinn, Estonia & Helsinki, Finland.

  • Kintsch, W. (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 95(2), 163–182.

    Article  Google Scholar 

  • Kintsch, W. (1998). The representation of knowledge in minds and machines. International Journal of Psychology, 33(6), 411–420.

    Article  Google Scholar 

  • Kintsch, W., & van Dijk, T. A. (1978). Toward a model of text comprehension and production. Psychological Review, 85(5), 363–394. https://doi.org/10.1037/0033-295X.85.5.363.

    Article  Google Scholar 

  • Koszalka, T. A., & Epling, J. (2010). A methodology for assessing elicitation of knowledge in complex domains: identifying conceptual representations of Ill-structured problems in medical diagnosis. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 311–334). Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4419-5662-0_16.

  • Kyle, K., Crossley, S., & Berger, C. (2018). The tool for the automatic analysis of lexical sophistication (TAALES): version 2.0. Behavior Research Methods, 50(3), 1030–1046.

    Article  Google Scholar 

  • Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211–240.

    Article  Google Scholar 

  • León, J. A., Olmos, R., Escudero, I., Cañas, J. J., & Salmerón, L. (2006). Assessing short summaries with human judgments procedure and latent semantic analysis in narrative and expository texts. Behavior Research Methods, 38(4), 616–627.

    Article  Google Scholar 

  • Li, H., Cai, Z., & Graesser, A. C. (2018). Computerized summary scoring: crowdsourcing-based latent semantic analysis. Behavior Research Methods, 50(5), 2144–2161.

    Article  Google Scholar 

  • Li, H., Gobert, J., & Dickler, R. (2017). Automated Assessment for Scientific Explanations in On-Line Science Inquiry. Proceedings of the 10th international conference on educational data mining, EDM 2017 (pp. 214–219). Wuhan, China

  • Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries. Text Summarization Branches Out, 74–81. Retrieved from https://www.aclweb.org/anthology/W04-1013.

  • Mayer, R. E. (1989). Models for understanding. Review of Educational Research, 59(1), 43–64.

    Article  Google Scholar 

  • McNamara, D. S., Allen, L., Crossley, S., Dascalu, M., & Perret, C. A. (2017). Natural language processing and learning analytics. Handbook of Learning Analytics, 93–104.

  • McNamara, D. S., Graesser, A. C., McCarthy, P. M., & Cai, Z. (2014). Automated evaluation of text and discourse with Coh-Metrix. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Nadolski, R. J., & Hummel, H. G. (2017). Retrospective cognitive feedback for progress monitoring in serious games. British Journal of Educational Technology, 48(6), 1368–1379.

    Article  Google Scholar 

  • Narayanan, V. K. (2005). Causal mapping: An historical overview. In V. K. Narayanan & D. J. Armstrong (Eds.), Causal mapping for research in information technology (pp. 1–19). Hershey: Idea Group Publishing.

    Chapter  Google Scholar 

  • Newman, M. (2010). Network: An introduction. New York: Oxford University Press.

    Book  Google Scholar 

  • Norman, D. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 7–14). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Passonneau, R. J., Poddar, A., Gite, G., Krivokapic, A., Yang, Q., & Perin, D. (2018). Wise crowd content assessment and educational rubrics. International Journal of Artificial Intelligence in Education, 28(1), 29–55.

    Article  Google Scholar 

  • Pirnay-Dummer, P., & Ifenthaler, D. (2011). Reading guided by automated graphical representations: How model-based text visualizations facilitate learning in reading comprehension tasks. Instructional Science, 39(6), 901–919. https://doi.org/10.1007/s11251-010-9153-2.

    Article  Google Scholar 

  • Pirnay-Dummer, P., Ifenthaler, D., & Spector, J. M. (2010). Highly integrated model assessment technology and tools. Educational Technology Research and Development, 58(1), 3–18. https://doi.org/10.1007/s11423-009-9119-8.

    Article  Google Scholar 

  • Rumelhart, D. E., & Norman, D. A. (1978). Accretion, tuning and restructuring: Three model of learning. In R. L. Klatzky & J. W. Cotton (Eds.), Semantic factors in cognition (pp. 37–53). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Rupp, A. A., Sweet, S., & Choi, Y. (2010). Modeling learning trajectories with epistemic network analysis: A simulation-based investigation of a novel analytic method for epistemic games. Presented at the annual meeting of the International Society for Educational Data Mining (EDM), Pittsburgh, PA.

  • Rus, V., Lintean, M., Banjade, R., Niraula, N. B., & Stefanescu, D. (2013, August). Semilar: The semantic similarity toolkit. In Butt, M., & Hussain, S. (Eds.), Proceedings of the 51st annual meeting of the association for computational linguistics: system demonstrations (pp. 163–168). Sofia, Bulgaria.

  • Santos Jr, E., Mohamed, A. A., & Zhao, Q. (2004). Automatic evaluation of summaries using document graphs. Proceedings of ACL 2004 workshop on text summarization branches out (pp 66–73). Barcelona, Spain.

  • Schvaneveldt, R. W., & Cohen, T. A. (2010). Abductive Reasoning and Similarity: Some Computational Tools. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-Based Diagnostics and Systematic Analysis of Knowledge (pp. 189–211). Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4419-5662-0_11.

  • Schvaneveldt, R. W., Durso, F. T., Goldsmith, T. E., Breen, T. J., & Cooke, N. M. (1985). Measuring the structure of expertise. International Journal of Man-Machine Studies, 23, 699–728.

    Article  Google Scholar 

  • Seel, N. M. (2004). Model-centered learning environments: Theory, Instructional design, and ethics. In N. M. Seel & S. Dijkstra (Eds.), Curriculum, plans, and processes in instruction design: International perspectives (pp. 49–74). Mahwah: Lawrence Erlbaum Associates Inc.

    Chapter  Google Scholar 

  • Segers, M. (1997). An alternative for assessing problem-solving skills: The overall test. Studies in Educational Evaluation, 23(4), 373–398.

    Article  Google Scholar 

  • Singer, L. M., & Alexander, P. A. (2017). Reading across mediums: Effects of reading digital and print texts on comprehension and calibration. The Journal of Experimental Education, 85(1), 155–172.

    Article  Google Scholar 

  • Smith, J. P., diSessa, A. A., & Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3(2), 115–163.

    Article  Google Scholar 

  • Spector, J. M. (2008). Cognition and learning in the digital age: Promising research and practice. Computers in Human Behavior, 24(2), 249–262.

    Article  Google Scholar 

  • Spector, J. M. (2010). Mental representations and their analysis: An epistemological perspective. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 27–40). Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4419-5662-0_3.

  • Spector, J. M., & Koszalka, T. A. (2004). The DEEP methodology for assessing learning in complex domains (Final report to the National Science Foundation Evaluative Research and Evaluation Capacity Building). Syracuse, NY: Syracuse University.

  • Stevens, E. A., Park, S., & Vaughn, S. (2019). A review of summarizing and main idea interventions for struggling readers in Grades 3 through 12: 1978–2016. Remedial and Special Education, 40(3), 131–149.

    Article  Google Scholar 

  • Strobl, C., Ailhaud, E., Benetos, K., Devitt, A., Kruse, O., Proske, A., et al. (2019). Digital support for academic writing: A review of technologies and pedagogies. Computers & Education, 131, 33–48.

    Article  Google Scholar 

  • Sung, Y.-T., Liao, C.-N., Chang, T.-H., Chen, C.-L., & Chang, K.-E. (2016). The effect of online summary assessment and feedback system on the summary writing on 6th graders: The LSA-based technique. Computers & Education, 95, 1–18.

    Article  Google Scholar 

  • Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research, 37, 141–188.

    Article  Google Scholar 

  • Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.

    Article  Google Scholar 

  • Van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New York: Academic Press.

    Google Scholar 

  • Wade-Stein, D., & Kintsch, E. (2004). Summary street: Interactive computer support for writing. Cognition and Instruction, 22(3), 333–362.

    Article  Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis: methods and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Westby, C., Culatta, B., Lawrence, B., & Hall-Kenyon, K. (2010). Summarizing expository texts. Topics in Language Disorders, 30(4), 275–287.

    Article  Google Scholar 

  • Yin, Y., Vanides, J., Ruiz-Primo, M. A., Ayala, C. C., & Shavelson, R. J. (2005). Comparison of two concept-mapping techniques: Implications for scoring, interpretation, and use. Journal of Research in Science Teaching, 42(2), 166–184.

    Article  Google Scholar 

  • Zimmerman, W. A., Kang, H. B., Kim, K., Gao, M., Johnson, G., Clariana, R., et al. (2018). Computer-automated approach for scoring short essays in an introductory statistics course. Journal of Statistics Education, 26(1), 40–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Kyu Kim.

Ethics declarations

Conflict of interest

Min Kyu Kim declares that he has no conflict of interest. Kathryn S. McCarthy declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or the national research committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.K., McCarthy, K.S. Using graph centrality as a global index to assess students’ mental model structure development during summary writing. Education Tech Research Dev 69, 971–1002 (2021). https://doi.org/10.1007/s11423-021-09942-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11423-021-09942-1

Keywords

Navigation