Skip to main content
Log in

Weight Change Mechanism of Lanthanum Strontium Manganite (LSM) During Thermal Cycles

  • Advances in Reversible Solid Oxide Electrochemical Cells for Energy Conversion
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the current work, the weight change behavior of (La0.8Sr0.2)0.98MnO3 ± δ (LSM-20) from room temperature to 1100°C during the thermal cycle experiments in dry air and Ar was comprehensively investigated with SDT, XRD analysis, and CALPHAD. Especially the quantitative Brouwer diagrams help in understanding the defect reactions inside LSM-20. The weight change was attributed mainly to the Schottky defect reaction. The relationship among weight change, molar change, defect reactions, chemical expansion, and phase transformation is discussed in detail. It is proposed that two very close rhombohedral LT and HT perovskites coexist in our thermal cycle temperature range. Also, the role of P(O2) in the thermal cycle shrinkage is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Sun, R. Hui and J. Roller, J. Solid State Electrochem. 14, 1125. https://doi.org/10.1007/s10008-009-0932-0 (2010)

    Article  Google Scholar 

  2. M.B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001)

    Article  Google Scholar 

  3. M. Mori, Y. Hiei, N.M. Sammes and G.A. Tompsett, J. Electrochem. Soc. 147, 1295. https://doi.org/10.1149/1.1393353 (2000)

    Article  Google Scholar 

  4. S. Jiang, J. Mater. Sci. 43, 6799. https://doi.org/10.1007/s10853-008-2966-6 (2008)

    Article  Google Scholar 

  5. M. Mori, J. Electrochem. Soc. 152, A732. https://doi.org/10.1149/1.1864312 (2005)

    Article  Google Scholar 

  6. B.P. McCarthy, L.R. Pederson, H.U. Anderson, X.-D. Zhou, P. Singh, G.W. Coffey and E.C. Thomsen, J. Am. Ceram. Soc. 90, 3255. https://doi.org/10.1111/j.1551-2916.2007.01890.x (2007)

    Article  Google Scholar 

  7. T. Grande, J.R. Tolchard and S.M. Selbach, Chem. Mater. 24, 338. (2012)

    Article  Google Scholar 

  8. Y. Shirai, S.-I. Hashimoto, K. Sato, K. Yashiro, K. Amezawa, J. Mizusaki and T. Kawada, Solid State Ionics 256, 83. https://doi.org/10.1016/j.ssi.2013.12.042 (2014)

    Article  Google Scholar 

  9. A.N. Grundy, B. Hallstedt and L.J. Gauckler, Acta Mater. 50, 2209. (2002)

    Article  Google Scholar 

  10. A.N. Grundy, B. Hallstedt and L.J. Gauckler, Calphad 28, 191. (2004)

    Article  Google Scholar 

  11. A.N. Grundy, B. Hallstedt and L.J. Gauckler, J. Phase Equilib. Diff. 25, 311. (2004)

    Article  Google Scholar 

  12. S. Darvish, H. Sabarou, S.K. Saxena and Y. Zhong, J. Electrochem. Soc. 162, E134. https://doi.org/10.1149/2.0361509jes (2015)

    Article  Google Scholar 

  13. B.P. McCarthy, L.R. Pederson, R.E. Williford and X.-D. Zhou, J. Am. Ceram. Soc. 92, 1672. https://doi.org/10.1111/j.1551-2916.2009.03082.x (2009)

    Article  Google Scholar 

  14. T. Soma, T. Takahashi, S. Kawasaki, K. Mori, Y. Ito and K. Yoshioka, US Patent 5, 432. (1995)

    Google Scholar 

  15. T. Degen, M. Sadki, E. Bron, U. König and G. Nénert, Powder Diffr. 29, S13. https://doi.org/10.1017/S0885715614000840 (2014)

    Article  Google Scholar 

  16. T. Mori, K. Inoue and N. Kamegashira, J. Alloy. Compd. 308, 87. (2000)

    Article  Google Scholar 

  17. D. Lowry, Ph.D. Thesis (Oklahoma State University: 2019)

  18. G. Pawley, J. Appl. Crystallogr. 14, 357. (1981)

    Article  Google Scholar 

  19. A.N. Grundy, E. Povoden, T. Ivas and L.J. Gauckler, Calphad 30, 33. (2006)

    Article  Google Scholar 

  20. H. Yokokawa, T. Horita, N. Sakai, M. Dokiya and T. Kawada, Solid State Ionics 86, 1161. (1996)

    Article  Google Scholar 

  21. J.O. Andersson, T. Helander, L.H. Hoglund, P.F. Shi and B. Sundman, Calphad 26, 273. (2002)

    Article  Google Scholar 

  22. J. Fleig, H.R. Kim, J. Jamnik and J. Maier, Fuel Cells 8, 330. https://doi.org/10.1002/fuce.200800025 (2008)

    Article  Google Scholar 

  23. R.T. Shannon and C.T. Prewitt, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 25, 925. (1969)

    Article  Google Scholar 

  24. T. Hashimoto, N. Ishizawa, N. Mizutani and M. Kato, J. Cryst. Growth 84, 207. https://doi.org/10.1016/0022-0248(87)90132-1 (1987)

    Article  Google Scholar 

  25. A. Chakraborty, P.S. Devi and H.S. Maiti, Mater. Lett. 20, 63. https://doi.org/10.1016/0167-577X(94)90149-X (1994)

    Article  Google Scholar 

  26. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido and Y. Tokura, Phys. Rev. B 51, 14103. https://doi.org/10.1103/physrevb.51.14103 (1995)

    Article  Google Scholar 

  27. J.F. Mitchell, D.N. Argyriou, C.D. Potter, D.G. Hinks, J.D. Jorgensen and S.D. Bader, Phys. Rev. B 54, 6172. https://doi.org/10.1103/physrevb.54.6172 (1996)

    Article  Google Scholar 

  28. S.T. Aruna, M. Muthuraman and K.C. Patil, J. Mater. Chem. 7, 2499. https://doi.org/10.1039/a703901h (1997)

    Article  Google Scholar 

  29. F. Zheng and L.R. Pederson, J. Electrochem. Soc. 146, 2810. https://doi.org/10.1149/1.1392012 (1999)

    Article  Google Scholar 

  30. L. Rørmark, K. Wiik, S. Stølen and T. Grande, J. Mater. Chem. 12, 1058. https://doi.org/10.1039/b103510j (2002)

    Article  Google Scholar 

  31. P. Žvátora, M. Veverka, P. Veverka, K. Knížek, K. Závěta, E. Pollert, V. Král, G. Goglio, E. Duguet and O. Kaman, J. Solid State Chem. 204, 373. https://doi.org/10.1016/j.jssc.2013.06.006 (2013)

    Article  Google Scholar 

  32. A.O. Turky, M.M. Rashad, A.M. Hassan, E.M. Elnaggar and M. Bechelany, Phys. Chem. Chem. Phys. 19, 6878. https://doi.org/10.1039/c6cp07333f (2017)

    Article  Google Scholar 

  33. J.H. Kuo, H.U. Anderson and D.M. Sparlin, J. Solid State Chem. 83, 52. (1989)

    Article  Google Scholar 

  34. H. Tagawa, N. Mori, H. Takai, Y. Yonemura, H. Minamiue and H. Inaba, J. Mizusaki and T. Hashimoto 97–18, 795. (1997)

    Google Scholar 

  35. J. Mizusaki, N. Mori, H. Takai, Y. Yonemura, H. Minamiue, H. Tagawa, M. Dokiya, H. Inaba, K. Naraya, T. Sasamoto and T. Hashimoto, Solid State Ionics 129, 163. (2000)

    Article  Google Scholar 

  36. K. Nakamura and K. Ogawa, J. Solid State Chem. 163, 65. https://doi.org/10.1006/jssc.2001.9370 (2002)

    Article  Google Scholar 

  37. A.N. Grundy, M. Chen, B. Hallstedt and L.J. Gauckler, J Phase Equilib Diff 26, 131. https://doi.org/10.1361/15477030523021 (2005)

    Article  Google Scholar 

  38. H. Sabarou, D.H. Huang and Y. Zhong, Ceram. Int. 43, 12249. https://doi.org/10.1016/j.ceramint.2017.06.086 (2017)

    Article  Google Scholar 

  39. H. Sabarou, V. Drozd, O. Awadallah, A. Durygin, S. Darvish, D.H. Huang and Y. Zhong, J. Alloy. Compd. 784, 592. https://doi.org/10.1016/j.jallcom.2018.12.358 (2019)

    Article  Google Scholar 

  40. R.G. Palmer, Adv. Phys. 31, 669. https://doi.org/10.1080/00018738200101438 (1982)

    Article  Google Scholar 

  41. S. Miyoshi, A. Kaimai, H. Matsumoto, K. Yashiro, Y. Nigara, T. Kawada and J. Mizusaki, Solid State Ionics 175, 383. (2004)

    Article  Google Scholar 

  42. S. Miyoshi, J.-O. Hong, K. Yashiro, A. Kaimai, Y. Nigara, K. Kawamura, T. Kawada and J. Mizusaki, Solid State Ionics 161, 209. (2003)

    Article  Google Scholar 

  43. S. Darvish, S. Gopalan and Y. Zhong, J. Power Sources 336, 351–359. https://doi.org/10.1016/j.jpowsour.2016.10.004 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Worcester Polytechnic Institute startup funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 677 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Wang, R., Drozd, V. et al. Weight Change Mechanism of Lanthanum Strontium Manganite (LSM) During Thermal Cycles. JOM 74, 4533–4543 (2022). https://doi.org/10.1007/s11837-022-05535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05535-2

Navigation