Skip to main content

Development of Biotic Stress Resistant Cowpea

  • Chapter
  • First Online:
Genomic Designing for Biotic Stress Resistant Pulse Crops

Abstract

Cowpea (Vigna unguiculata L. (Walp)) is one of the world’s major food legumes produced on almost every continent, although concentrated in Sub-Saharan Africa from where it originated. In its native range and in Asia and the Americas where it spread to and is widely grown, it has a series of disease pathogens and insect pests which constitute the most important biotic stresses of the crop. Although fungal pathogens are more numerous; bacterial, nematode and viral pathogens cause serious yield losses. This chapter reviews the biotic stresses found in cowpea and their management and control strategies along with the germplasm sources for resistance and tolerance of them as well as the genes and QTL needed to develop new varieties for them. Among the fungal diseases affecting leaves and stems are: anthracnose, Cercospora leaf spot, powdery mildew, southern blight, stem rot and rusts. Roots and plant vasculatures are affected by charcoal rot, damping off and Fusarium wilt. Bacterial blight is the main pathogen of this class; while many viruses affect cowpeas some of which are seed borne and others just insect vectored. The most important insects are aphids and leafhoppers especially as vectors, bean fly as a seedling pest; flea beetles, leaf miners, pod borers and pod bugs or leaf defoliators as mature plant pests; as well as pulse beetles or bruchids as insects of stored seed. Implications for crop improvement are provided especially given the availability of genome sequence and multiple molecular marker systems for the plant species. Various molecular markers like RFLPs, SSRs and SNPs have been identified and tagged for various insect-pests and disease resistant genes. These markers have played a significant role in accelerating various cowpea molecular breeding programmes like QTL mapping; Marker-assisted selection (MAS), Marker-assisted back cross breeding, association mapping etc. Host plant resistance has been an important component of integrated pest management for all these disease pathogens and insect pests and is based on collections of cowpea accessions and their screening. Sources of resistance to major constraints are listed in this review as well as how their deployment can best be managed. In addition, the future of cowpea breeding and germplasm utilization is commented upon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adipala E, Nampala P, Karungi J, Isubikalu P (2000) A review on options for management of cowpea pests: experiences from Uganda. Integr Pest Manag Rev 5(3):185–196

    Google Scholar 

  • Adjadi O, Singh BE, Singh SR (1985) Inheritance of bruchid resistance in cowpea. Crop Sci 25(5):740–742

    Google Scholar 

  • Agbicodo EM, Fatokun CA, Bandyopadhyay R, Wydra K, Diop NN, Muchero W, Ehlers JD, Roberts PA, Close TJ, Visser RGF, Van der Linden CG (2010) Identification of markers associated with bacterial blight resistance loci in cowpea [Vigna unguiculata (L.) Walp.]. Euphytica 175(2):215–226

    Google Scholar 

  • Ahmed O, Balogun OS, Shittu BT (2012) Screening of cowpea genotypes for resistance to Macrophomina phaseolina infection using two methods of inoculation. Asian J Plant Pathol 6(1):13–18

    Google Scholar 

  • Alina M (2017) Bacterial blight of cowpeas. Farmer’ Weekly 51

    Google Scholar 

  • Allen DJ, Thottappilly G, Rossel HW (1982) Cowpea mottle virus: field resistance and seed transmission in virus tolerant cowpea Vigna unguiculata. Ann Appl Biol 100:331–336

    Google Scholar 

  • Amoako-Atta B, Omolo EO, Kidega EK (1983) Influence of maize, cowpea and sorghum intercropping systems on stem-/pod-borer infestations. Insect Sci Appl 4:47–57

    Google Scholar 

  • Anilkumar BT, Chandrashekar M, Veerappa KB (1989) Assessment of cowpea genotypes for multiple disease resistance (Abs). Indian Phytopathol 42:334

    Google Scholar 

  • Arafa MM, Shahin SI, Ahmed MFA (2016) Effect of biological control agent on growth, yield and rust diseases of three Cowpea (Vigna unguiculata L.) cultivars grown in sandy soil. Middle East J Agric Res 5(3):378–385

    Google Scholar 

  • Armstrong GM, Armstrong JK (1950) Biological races of Fusarium causing wilt of cowpeas and soybeans. Phytopathology 40:181–193

    Google Scholar 

  • Asante SK, Tamo M, Jackai LEN (2001) Integrated management of cowpea insect pests using elite cultivars date of planting and minimum insecticide application. Afr Crop Sci J 9(4):655–665

    Google Scholar 

  • Atiri GI, Ekpo EJA, Thottappilly G (1984) The effect of aphid-resistance in cowpea on infestation and development of Aphis craccivora and the transmission of cowpea aphid-borne mosaic virus. Ann Appl Biol 104(2):339–346

    Google Scholar 

  • Baird RE, Watson CE, Scruggs M (2003) Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Dis 87:563–566

    PubMed  Google Scholar 

  • Banyal DK, Thakur A, Singh A (2019) Management of leaf spot (Cercospora canescens) and powdery mildew (Erysiphe polygoni) of cowpea through fungicides. Plant Dis Res 34(2):119–123

    Google Scholar 

  • Barone A, Del Giudice A, Ng NQ (1992) Barriers to interspecific hybridization between Vigna unguiculata and Vigna vexillata. Sexual Plant Reprod 5(3):195–200

    Google Scholar 

  • Barro A, De La Salle TJB, Dieni Z, Kiebre Z, Poda L, Sawadogo M (2016) Inheritance and the allelic relationship of resistance to Cowpea Aphid Borne Mosaic Virus (CABMV) in two cowpea genotypes, KVX640 and KVX396-4-5-2D, in Burkina Faso. IJCMAS 5(8):285–292

    Google Scholar 

  • Bashir M (1992) Serological and biological characterization of seed-borne isolates of black eye cowpea mosaic and cowpea aphid borne mosaic potyviruses in Vigna unguiculata (L.) Walp. PhD dissertation, Oregon State University, USA

    Google Scholar 

  • Bashir M, Hampton RO (1996) Natural occurrence of five seed borne cowpea viruses in Pakistan. Plant Dis 77(9):948–951

    Google Scholar 

  • Bird J, Maramorosch K (1975) (eds) Tropical diseases of legumes. Acad Press, London, 171 pp

    Google Scholar 

  • Booker HM, Umaharan P, McDavid CR (2005) Effect of Cowpea severe mosaic virus on crop growth characteristics and yield of cowpea. Plant Dis 89:515–520

    CAS  PubMed  Google Scholar 

  • Boukar O, Bhattacharje R, Fatokun C, Kumar PL, Gueye B (2013) Cowpea. In: Singh M, Upadhyaya HD, Bisht IS (eds) Genetic and genomic resources of grain legume improvement, vol 18, pp 137–156

    Google Scholar 

  • Boukar O, Fatokun CA, Roberts PA, Abberton M, Huynh BL, Close TJ (2015) Cowpea. In: De Ron AM (ed) Grain legumes. Handbook of plant breeding, vol 10. Springer, New York, NY, pp 219–250

    Google Scholar 

  • Boukar O, Belko N, Chamarthi S, Togola A, Batieno J, Owusu E, Fatokun C (2019) Cowpea (Vigna unguiculata): genetics, genomics and breeding. Plant Breed 138(4):415–424

    Google Scholar 

  • Boukar O, Abberton M, Oyatomi O, Togola A, Tripathi L, Fatokun C (2020) Introgression breeding in cowpea [Vigna unguiculata (L.) walp.]. Front Plant Sci 11:567425

    Google Scholar 

  • Braun U (1987) A monograph of the Erysiphales (powdery mildews). Nova Hedwigia Suppl 89:195–196

    Google Scholar 

  • Caswell GH, Akibu S (1980) The use of pirimiphos methyl to control bruchids attacking selected varieties of stored cowpea. Trop Grain Legume Bull 17/1 8:9–11

    Google Scholar 

  • Chandrashekar M, Anilkumar TB, Saifulla M (1989) Effect of different dates of cowpea on the severity of leaf rust caused by Uromyces phaseoli var. vignae. Trop Agri 65:149–152

    Google Scholar 

  • Cisse N, Ndiaye M, Thiaw S, Hall AE (1997) Registration of “Melakh” cowpea. Crop Sci 37(6):15–22

    Google Scholar 

  • Cruz ARR, AragĂŁo FJL (2014) RNAi-based enhanced resistance to cowpea severe mosaic virus and cowpea aphid-borne mosaic virus in transgenic cowpea. Plant Pathol J 63:831–837

    CAS  Google Scholar 

  • Das S, DeMason DA, Ehlers JD, Close TJ, Roberts PA (2008) Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. J Exp Bot 59(6):1305–1313

    CAS  PubMed  Google Scholar 

  • De Prins J, De Prins W (2019) Global taxonomic database of Gracillariidae (Lepidoptera). World Wide Web electronic publication. www.gracillariidae.net. [acc. 27.vi.2019]

  • Don-Pedro KN (1983) Level of parasitization of Maruca testulalis (Geyer) (Lepidoptera: Pyralidae) larvae in early and late cowpea (Vigna unguiculata) in Nigeria. Rev Zool Afr 97:678–683

    Google Scholar 

  • Edema R, Adipala E, Florini DA (1997) Influence of season and cropping systems on occurrence of cowpea diseases in Uganda. Plant Dis 81:465–468

    CAS  PubMed  Google Scholar 

  • Emechebe AM, Lagoke STO (2002) Recent advances in research on cowpea. Challenges and opportunities for enhancing sustainable cowpea production, p 94

    Google Scholar 

  • Ezeuh MI (1991) Prospects for cultural and biological control of cowpea pests. Insect Sci Appl 12:285–592

    Google Scholar 

  • Fatokun C, Danesh D, Young N, Stewart E (1993) Molecular taxonomic relationships in the genus Vigna based on RFLP analysis. Theor Appl Genet 86:97–104. https://doi.org/10.1007/BF00223813 PMID: 24193388

    Article  CAS  PubMed  Google Scholar 

  • Fery RL (1985) Cowpea research, production and utilization. Wiley, New York, pp 120–135

    Google Scholar 

  • Fery RL, Dukes PD (2002) Southern blight (Sclerotium rolfsii Sacc.) of cowpea: yield-loss estimates and sources of resistance. Crop Protec 21(5):403–408

    Google Scholar 

  • Fraser RSS (1992) The genetics of plant-virus interactions: implications for plant breeding. Euphytica 63:175–185

    Google Scholar 

  • Ganiyu S, Akinola P (2017) Control of common bacterial blight disease of cowpea (Vigna unguiculata [L.] Walp) with certain plant extracts in Abeokuta, Nigeria. J Crop Improv 31(25):1–9

    Google Scholar 

  • Gethi M, Khaemba BM (1991) Damage by pod bugs on cowpea when intercropped with maize. Trop Pest Manag 37:230–239

    Google Scholar 

  • Gioi TD, Boora KS, Chaudhary K (2012) Identification and characterization of SSR markers linked to yellow mosaic virus resistance genes in cowpea (Vigna unguiculata). Intl J Plant Res 2:1–8

    Google Scholar 

  • Gomathinayagam P, Rathnaswamy R, Ramaswamy NM (1998) Interspecific hybridization between Vigna unguiculata (L.) Walp. and V. vexillata (L.) A. Rich. through in vitro embryo culture. Euphytica 102(2):203–209

    Google Scholar 

  • Greathead DJ (1975) Biological control of the bean fly, Ophiomyia phaseoli (Tryon). (Dip: Agromizidae) by Opius spp. (Hymenoptera: Braconidae) in the Hawaiian Islands. Entomophaga 20:313–316

    Google Scholar 

  • Gumedzoe MYD, Rossel HW, Thottappilly G, Asselin A, Huguenot C (1998) Reaction of cowpea (Vigna unguiculata L. Walp.) to six isolates of blackeye cowpea mosaicvirus (BlCMV) and cowpea aphid-borne mosaic virus (CAMV), two potyviruses infecting cowpea in Nigeria. Intl J Pest Manag 44(1):11–16

    Google Scholar 

  • Ha TM (2014) A review on the development of integrated pest management and its integration in modern agriculture. Asian J Agri Food Sci 2(4)

    Google Scholar 

  • Hare WW (1953) A new race of Fusarium causing wilt of cowpea. Phytopathology 43:291

    Google Scholar 

  • Huang CC, Peng WK, Talekar NS (2003) Parasitoids and other natural enemies of Maruca vitrata feeding on Sesbania cannabina in Taiwan. Biocontrol 48(4):407–416

    Google Scholar 

  • Huynh BL, Ehlers JD, Ndeve A, Wanamaker S, Lucas MR, Close TJ, Roberts PA (2015) Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Mol Breeding35:36

    Google Scholar 

  • Huynh BL, Matthews WC, Ehlers JD, Lucas MR, Santos JRP, Ndeve A, Roberts PA (2016) A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna unguiculata L. Walp.). Theor Appl Genet 129:87–95. https://doi.org/10.1007/s00122-015-2611-0

    Article  CAS  PubMed  Google Scholar 

  • Huynh BL, Ehlers JD, Maria Munoz-Amatriain M, Lonardi S, Santos JRP, Ndeve A, Roberts PA (2017) A multi-parent advanced generation inter-cross population for genetic analysis of multiple traits in cowpea (Vigna unguiculata L Walp.). BioRxiv 1–24. https://doi.org/10.1101/149476

  • International Institute of Tropical Agriculture (IITA) (1982) Annual report. IITA, Ibadan, Nigeria, pp 69–90

    Google Scholar 

  • Isubikalu P, Erbaugh JM, Semana AR, Adipala E (1999) Influence of farmer production goals on cowpea pest management in eastern Uganda: implications for developing IPM programmes. Afr Crop Sci J 7(4):539–548

    Google Scholar 

  • Jackai LE, Daoust RA (1986) Insect pests of cowpeas. Annu Rev Entomol 31:95–119

    Google Scholar 

  • Jayashree B, Pankaja NS, Sugeetha G, Mahadev J, Suryakanth (2019) Investigations on the rust disease prevalence on cowpea in Mandya district and evaluation of cowpea genotypes for its resistance. Intl J Curr Microbiol App Sci 8(11):1126–1133

    Google Scholar 

  • Kale JK, Anahosur KH (1989) Chemical control of cowpea rust. Karntaka J Agri Sci 9(1):179–181

    Google Scholar 

  • Kannan K, Rajesh Kannan V, Shibinaya N, Umamaheswari M (2019) Control of Fusarium wilt disease in cowpea plant (Vigna unguiculata) using secondary metabolites produced in Bradyrhizobium japonicum. Kong Res J 6(2):28–36

    Google Scholar 

  • Kanniyan J, Greenberg DC, Haciwa HC, Mbewe MN (1987) Screening cowpea for resistance to major diseases in Zambia. Trop Grain Legume Bull 34:23–26

    Google Scholar 

  • Karat KPR, Venugopal R, Gould JV (1985) Identification of field resistance and symptomatology for collar rot of cowpea caused by Sclerotium rolfsii under natural conditions. Plant Pathol Newsl 3(1–2):23

    Google Scholar 

  • Karungi J, Nampala MP, Adipala E, Kyamanywa S, Ogenga-Latigo MW (1999) Population dynamics of selected cowpea insect pests as influenced by different management practicesineasternUganda. Afr Crop Sci J 7(4):487–496

    Google Scholar 

  • Karungi J, Adipala E, Kyamanywa S, Ogenga-Latigo, MW, Oyobo N, Jackai LEN (2000) Pest management in cowpea. Part 2. Integrating planting time, plant density and insecticide application for management of cowpea field insect pests in eastern Uganda. Crop Protec 19(4):237–245

    Google Scholar 

  • Kennedy JS, Booth CO, Kershaw WJS (1961) Host finding by aphids in the field: visual attraction. Ann Appl Biol 49:1–21

    Google Scholar 

  • Lane JA, Moore THM, Child DV et al (1997) Variation in virulence of Striga gesnerioides on cowpea: new sources of crop resistance. In: Singh BB, Mohan Raj DR, Dashiell KE et al (eds) Advances in cowpea research. (Co-publication of International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences, (JIRCAS)). IITA, Ibadan, pp 225–230

    Google Scholar 

  • Lima MGA, Daoust RA, Soper RA (1984) Patogenicidade de fungos a ElasmopaLpus lignosellus e outros lepidopleros pragas do caupi (Vigna unguiculata Walp) pulverizados diretamente numa torre calabrada. Congr Bras Entomol, 9th, Londrina, PR, Brazil

    Google Scholar 

  • Lodha S (1995) Soil solarization, summer irrigation and amendments for the control of Fusarium oxysporum f. sp. cumini and Macrophomina phaseolina in arid soils. Crop Protec 14:215–219

    Google Scholar 

  • Lonardi S, Muñoz-AmatriaĂ­n M, Liang Q, Shu S, Wanamaker SI, Lo S, Tanskanen J, Schulman AH, Zhu T, Luo MC, Alhakami H, Ounit R, Hasan AM, Verdier J, Roberts PA, Santos JRP, Ndeve A, DoleĹľel J, Vrána J, Hokin SA, Farmer AD, Cannon SB, Close TJ (2019) The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J 98(5):767–782. https://doi.org/10.1111/tpj.14349

  • Lucas MR, Diop NN, Wanamaker S, Ehlers JD, Roberts PA, Close TJ (2011) Cowpea-soybean synteny clarified through an improved genetic map. Plant Genome 4:218–224. https://doi.org/10.3835/plantgenome2011.06.0019

  • Lucas MR, Ehlers JD, Roberts PA, Close TJ (2012) Markers for quantitative resistance to foliar thrips in cowpea. Crop Sci 52:2075–2081. https://doi.org/10.2135/cropsci2011.12.0684

    Article  Google Scholar 

  • Mamet JR, Williams JR (1993) The recorded foodplants of mauritian insects. Mauritius Sugar Ind Res Inst 35:66–136

    Google Scholar 

  • Masangwa JI, Aveling TA, Kritzinger Q (2013) Screening of plant extracts for antifungal activities against Colletotrichum species of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata (L.) Walp). J Agric Sci 151(4):482–491. https://doi.org/10.1017/S0021859612000524

  • Matteson PC (1982) The effects of intercropping with cereal and minimal permethrin application on insect pests of cowpeas and their natural enemies in Nigeria. Trop Pest Manag 28:373–380

    Google Scholar 

  • Menendez CM, Hall AE, Gepts P (1997) A genetic linkage map of cowpea (Vigna unguiculata) developed from across between two inbred, domesticated lines. Theor Appl Genet 95:1210–1217

    CAS  Google Scholar 

  • Mohammed BS, Ishiyaku MF, Abdullahi US, Katung MD (2014) Response of transgenic Bt cowpea and their hybrids under field conditions. J Plt Breed Crop Sci 6:91–96

    Google Scholar 

  • Monyo ES, Gowda CLL (2014) Grain legumes strategies and seed roadmaps for select countries in Sub-Saharan Africa and South Asia. ICRISAT, Patancheru, Hyderabad, Andhra Pradesh, India

    Google Scholar 

  • Muchero W, Diop NN, Bhat PR, Fenton RD, Wanamaker S, Pottorff M et al (2009) A consensus genetic map of cowpea [Vigna unguiculata (L.) Walp.] and synteny based on EST-derived SNPs. Proc Natl Acad Sci USA 106:18159–18164. https://doi.org/10.1073/pnas.0905886106

  • Muchero W, Ehlers JD, Roberts PA (2010) QTL analysis for resistance to foliar damage caused by Thrips tabaci and Frankliniella schultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.]. Mol Breeding 25:47–56. https://doi.org/10.1007/s11032-009-9307-6

  • Muchero W, Ehlers JD, Close TJ, Roberts PA (2011) Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]. BMC Genomics 12:8. https://doi.org/10.1186/1471-2164-12-8

  • Munoz-Amatriain M, Mirebahim H, Xu P, Wanamaker SI, Luo MC, Alhakami H, Close TJ (2017) Genome resources for climate- resilient cowpea, an essential crop for food security. Plant J89:1042–1054

    Google Scholar 

  • Myers GO, Fatokun CA, Young ND (1996) RFLP mapping of an aphid resistance gene in cowpea (Vigna unguiculata L. Walp). Euphytica 91(2):181–187

    Google Scholar 

  • Nabirye J, Nampala P, Ogenga-Latigo MW, Kyamanywa S, Wilson H, Odeke V, Iceduna C, Adipala E (2003) Farmer-participatory evaluation of cowpea integrated pest management (IPM) technologies in Eastern Uganda. Crop Protec 22(1):31–38

    Google Scholar 

  • Nampala P, Adipala E, Ogenga-Latigo MW, Kyamanywa S, Obuo JE (1999) Effect of cowpea monocultures and polycultures with sorghum and greengram on predatory arthropods. Ann Appl Biol 135:457–461

    Google Scholar 

  • Nandini R, Kulkarni S (2015) Integrated management of bacterial blight of cowpea caused by Xanthomonas axonopodis pv. Vignicola (burkh.). Intl J Bioassays 4(08):4174–4176

    Google Scholar 

  • Nene YL, Haware MP, Reddy MV, Phillips JC, Castro EL, Kotasthane SR, Sah RP (1989) Identification of broad based and stable resistance to wilt and root-rots in chickpea. Indian Phytopathol 42(4):499–505

    Google Scholar 

  • Neya BJ, Zida PE, Sereme D, Lund OS, Traore O (2015) Evaluation of yield losses caused by Cowpea Aphid-borne mosaic virus (CABMV) in 21 Cowpea (Vigna unguiculata (L.) Walp.) Varieties in Burkina Faso. Pak J Bio Sci 18(7):304–313

    Google Scholar 

  • N’Guessan KF, Chalfant RB (1990) Dose response of the cowpea curculio (Coleoptera: Curculionidae) from different regions of Georgia to some currently used pyrethroid insecticides. J Entomol Sci 25:219–222

    Google Scholar 

  • Ofuya TI (1997) Control of the cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae), in cowpea, Vigna unguiculata (L.) Walp. Integr Pest Manag Rev 2(4):199–207

    Google Scholar 

  • Oghiakhe S, Jackai LEN, Makanjuola WA (1992) Cowpea plant architecture in relation to infestation and damage by legume pod borer, Maruca testulalis Geyer (Lepidoptera: Pyralidae)–2. Effect of pod angle. Insect SciIts Appl 13:339–344

    Google Scholar 

  • Ogunsola KE, Fatokun CA, Boukar O, Ilori CO, Kumar PL (2010) Characterizing genetics of resistance to multiple virus infections in cowpea (Vigna unguiculata L. Walp). In: Abstracts: Fifth World Cowpea Conference: Improving Livelihoods in the cowpea value chain through advancement of Science, September 27–October 1, Saly, Senegal, pp 26–27. IITA, Nigeria

    Google Scholar 

  • Oigiangbe ON, Jackai LEN, Ewete FK, Hughes J, Lajide L (2002) Reduced consumption and use of pods of Vigna species (Leguminosae) by Maruca vitrata (Lepidoptera: Pyralidae). Afr Entomol 10(2):333–340

    Google Scholar 

  • Oigiangbe ON, Jackai LEN, Ewete FK, Lajide L, Hughes J (2006) Effects of pubescence on the oviposition and feeding behaviour of M. vitrata Fabricius on Vigna species. Ghana J Sci 46:55–65

    Google Scholar 

  • Okechukwu RE, Florini DA (2000) Yield depression in cowpea cultivars infected with Xanthomonas campestris pv. vignicola in Sudan savanna of Nigeria. Trop Agri Res Ext 3:98–101

    Google Scholar 

  • Omoigui LO, Arrey MO, Danmaigona CC, Ekeruo G, Timko MP (2019) Inheritance of resistance to Cercospora leaf spot disease of cowpea [Vigna unguiculata (L.) Walp]. Euphytica 21(5):1–2

    Google Scholar 

  • Omo-Ikerodah EE, Fatokun CA, Fawole I (2009) Genetic analysis of resistance to flower bud thrips (Megalurothrips sjostedti) in cowpea (Vigna unguiculata [L.] Walp.). Euphytica 165(1):145–154

    Google Scholar 

  • Orawu M, Melis R, Laing M, Derera J (2013) Genetic inheritance of resistance to cowpea aphid-borne mosaic virus in cowpea. Euphytica 189:191–201. https://doi.org/10.1007/s10681-012-0756-3

    Article  CAS  Google Scholar 

  • Ouedraogo JT, Ouedraogo M, Gowda BS et al (2012) Development of sequence characterized amplified region (SCAR) markers linked to race-specific resistance to Striga gesnerioides in cowpea (Vigna unguiculata L.). African J Biotech 11:12555–12562. https://doi.org/10.5897/AJB12.805

  • Pandey NK, Singh SC (1997) Observations on the biology of the pulse beetle Callosobruchuschinensis (Linn.) infesting stored pulses. UP J Zool 17(1):38–42

    Google Scholar 

  • Patel PN (1981) Pathogen variability and host resistance to three races of the bacterial pustule pathogen in cowpea. Trop Agric 58:275–280

    Google Scholar 

  • Patel PN (1982a) Genetics of cowpea reactions to two mosaic virus from Tanzania. Phytopathol 72:460–466

    Google Scholar 

  • Patel PN (1982b) Genetics of host reactions to three of the bacterial pustule pathogen in cowpea. Euphytica 31:805–814. https://doi.org/10.1007/BF00039221

    Article  Google Scholar 

  • Patro B, Behera MK (1991) Mutualism between the bean aphids (Aphis craccivora Koch) and ants. Orissa J Agric Res 4(3–4):238

    Google Scholar 

  • Peksen E, Gulumser A (2014) Leaf and stomata characteristics and tolerance of cowpea cultivars to drought stress based on drought tolerance indices under rainfed and irrigated conditions. IJCMAS 3(2):626–634

    CAS  Google Scholar 

  • Pettersson J, Karunaratne S, Ahmed E, Kumar V (1998) The cowpea aphid, Aphis craccivora, host plant odours and pheromones. Entomologia-experimentalis-et-Applicata 88:177–184

    Google Scholar 

  • Pottorff M, Wanamaker S, Ma YQ, Ehlers JD, Roberts PA, Close TJ (2012) Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f. sp. tracheiphilum race 3 in cowpea [Vignaunguiculata (L.) Walp]. PLoS One 7:e41600. https://doi.org/10.1371/journal.pone.0041600

  • Pouwels J, Carette JE, Jan Van Lent J, Wellink J (2002) Cowpea mosaic virus: effects on host cell processes. Mol Plant Pathol 3(6):411–418

    CAS  PubMed  Google Scholar 

  • Prakash CS, Shivashankar G (1984) Inheritance of resistance to bacterial blight (Xanthomonas campestris pv. vignicola) in cowpea. Genet Agrar 38:1–10

    Google Scholar 

  • Prasanna KPR (1985) Seed health testing of cowpea with special reference to anthracnose caused by C. lindemuthianum. Seed Sci Technol 13:821–827

    Google Scholar 

  • Qin J, Shi A, Mou B, Bhattarai G, Yang W, Weng Y, Motes D (2017) Association mapping of aphid resistance in USDA cowpea (Vigna unguiculata L. Walp.) core collection using SNPs. Euphytica 213(2):36

    Google Scholar 

  • Raina A, Laskar RA, Tantray YR, Khursheed S, Wani MR, Khan S (2020) Characterization of induced high yielding cowpea mutant lines using physiological, biochemical and molecular markers. Sci Rep 10(1):1–22

    Google Scholar 

  • Raju SG, Anilkumar TB (1990) Evaluation of cowpea genotypes for partial resistance to powdery mildew. Euphytica 50:191–195

    Google Scholar 

  • Rakhshani E, Talebi AA, Kavallieratos NG, Rezwani A, Manzari S, Tomanović Ĺ˝ (2005) Parasitoid complex (Hymenoptera, Braconidae, Aphidiinae) of Aphis craccivora Koch (Hemiptera: Aphidoidea) in Iran. J Pest Sci 78(4):193–198

    Google Scholar 

  • Rangaiah S (1997) Inheritance of resistance to Uromyces phaseolus in Vigna unguiculata (L.) Walp. Crop Improv 24:251–252

    Google Scholar 

  • Redden RJ, Dobie PE, Gatehouse AM (1983) The inheritance of seed resistance to Callosobruchus maculatus F. in cowpea (Vigna unguiculata L. Walp.). I. Analyses of parental, F1, F2, F3 and backcross seed generations. Aust J Agric Res 34(6):681–695

    Google Scholar 

  • Sagar AD (1991) Pest control strategies: concerns, issues, and options. Environ Impact Assess Rev 11(3):257–279

    Google Scholar 

  • Sendhilvel V, Buvaneswari D, Kanimozhi S, Mathiyazhagan S, Kavita K, Raguchander T (2005) Management of cowpea root-rot caused by Macrophomilla phaseolina (Tassi) Goid. using plant growth promoting rhizobacteria. J Biol Control 19(1):41–46

    Google Scholar 

  • Sharma OP, Gopali, JB, Yelshetty S, Bambawale OM, Garg, DK, Bhosle BB (2010) Pests of pigeonpea and their management. NCIPM, LBS Building, IARI Campus, New Delhi India

    Google Scholar 

  • Sidibe H, Batieno BJ, Ouedraogo TJ, Tignegre JB, Sawadogo M (2019) Genetic Analysis of Flower Bud Thrips Resistance (Megalurothrips sjostedti) in Cowpea (Vigna unguiculata [L.] Walp.) in Burkina Faso. Eur Sci J 15(18):23–38. https://doi.org/10.19044/esj.2019.v15n18p23

  • Singh BB (2002) Recent genetic studies in cowpea. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and opportunities for enhancing sustainable cowpea production, proceedings of the world cowpea research conference III held at the International Institute of Tropical Agriculture (IITA)), Ibadan, pp 3–13

    Google Scholar 

  • Singh BB (2005) Cowpea [Vigna unguiculata (L.) Walp. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement, vol 1. CRC Press, Boca Raton, FL, USA, pp 117–162

    Google Scholar 

  • Singh BB (2014) Cowpea: the food legume of the 21st century. Crop Sci Soc Amer, Madison, WI

    Google Scholar 

  • Singh SR, Allen DJ (1979) Cowpea pests and diseases. Manual Series No.2. IITA, Ibadan, Nigeria

    Google Scholar 

  • Singh SR, Allen DJ (1980) Pests, diseases, resistance and protection in cowpea. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. HMSO, London, pp 419–443

    Google Scholar 

  • Singh SR, Jackai LEN (1985) Insect pests of cowpeas in Africa: their life cycle, economic importance and potential for control. Cowpea Res. Prod Util 217–231

    Google Scholar 

  • Singh S, Lodha S (1986) Varietal resistance of cowpea to Macrophomina phaseolina (Tassi.) Goid. causing dry root-rot and its control. IJAS 56(8):552–555

    Google Scholar 

  • Singh RS, Sinha RP (1955) Studies on the wilt disease of cowpea in Uttar Pradesh-occurrence and symptoms of the disease and identity of the causal organism. J Indian Bot Soc 34(4):375–381

    Google Scholar 

  • Singh SR, Singh BB, Jackai LEN et al (1983) Cowpea research at IITA, Ibadan, Nigeria. Inf Ser 14:1–20

    Google Scholar 

  • Singh SK, Nene YL, Reddy, MV (1990a) Influence of cropping system on M. phaseolina population in soil. Plant Dis 74:814

    Google Scholar 

  • Singh SR, Jackai LEN, Dos Santos JHR, Adalla CB (1990b) Insect pests of cowpea. In: Singh SR (ed) The insect pests of tropical food legumes. Wiley, Baffins Lane, Chichester, pp 43–89

    Google Scholar 

  • Singh BB, Ehlers JD, Sharma B et al (2002) Recent progress in cowpea breeding. In: Fatokun CA, Tarawali SA, Singh BB et al (eds) Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the world cowpea research conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, pp 22–40

    Google Scholar 

  • Soans AB, Soans JS (1971) Proximity of the colonies of the tending ant species as a factor determining the occurrence of aphids. J Bombay Nat Hist Soc 68(3):850–851

    Google Scholar 

  • Sohi HS, Rawal RD (1983) Field resistance of cowpea varieties to anthracnose (Colletotrichium lindsmuthianum) and stem blight (Macrophomina phaseolina) diseases. IJMPP 13:58–60

    Google Scholar 

  • Souleymane A, Aken’Ova ME, Fatokun CA, Alabi OY (2013) Screening for resistance to cowpea aphid (Aphis craccivora Koch) in wild and cultivated cowpea (Vigna unguiculata L. Walp.) accessions. Int J Sci Environ Technol 2:611–621. https://doi.org/10.13140/2.1.4717.9207

  • Srinivasacharyulu BS, Yadav TD (1997) Olfactory and ovipositional preference of two strains of Callosobruchus chinensis. Indian J Entomol 59(2):193–197

    Google Scholar 

  • Stephen AF, Rebecca AB (1992) Sclerotium rolfsii. Crop Knowledge Master

    Google Scholar 

  • Stoffella PJ, Bullock RC, Sonoda RM (1990) Influence of pesticide schedules on growth and yield of cowpea. Proc Interamerican Soc Trop Hort 34:83–87

    Google Scholar 

  • Taiwo MA, Shoyinka SA (1998) Viruses infecting cowpeas in Africa with special emphasis on the potyviruses. Virus Dis Plants Africa 93:115

    Google Scholar 

  • Tanimu MU, Mohammed IU, Muhammad A, Kwaifa NM (2018) Response of cowpea varieties to basal stem rot (Sclerotium rolfsii) disease in southern guinea savanna, Nigeria. Equijost 5(1):1–8

    Google Scholar 

  • Thottappilly G, Rossel HW (1992) Virus diseases of cowpea in tropical Africa. Trop Pest Manag 38:337–348

    Google Scholar 

  • Timko MP, Ehlers JD, Roberts PA (2007) Cowpea. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 3. Pulses. Sugar and Tuber Crops. Springer, Berlin, Heidelberg, pp 49–67

    Google Scholar 

  • Timko MP, Rushton PJ, Laudeman TW, Bokowiec MT, Chipumuro E, Cheung F, Town CD, Chen X (2008) Sequencing and analysis of the gene-rich space of cowpea. BMC Genom 9:103

    Google Scholar 

  • Togola A, Boukar O, Chamarthi S, Belko N, Tamò M, Oigiangbe N, Ojo J, Ibikunle M, Fatokun C (2019) Evaluation of cowpea mini core accessions for resistance to flower bud thrips Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae). J Appl Entomol 143(6):683–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Togola A, Boukar O, Servent A, Chamarthi S, Tamo M, Fatokun C (2020) Identification of sources of resistance in cowpea mini core accessions to Aphis craccivora Koch (Homoptera: Aphididae) and their biochemical characterization. Euphytica 216:1–15

    Google Scholar 

  • Torres AM (2010) Application of molecular markers for breeding disease resistant varieties in crop plants. Molecular techniques in crop improvement. Springer, Dordrecht, pp 185–205

    Google Scholar 

  • Tsuchizaki T, Yora K, Asuyama H (1970) The viruses causing mosaic of cowpea and azuki bean, and their transmissibility through seeds. Ann Phytopathol Soc Jpn 36:112–120

    Google Scholar 

  • Ubi BE, Mignouna H, Thottappilly G (2000) Construction of a genetic linkage map and QTL analysis using a recombinant inbred population derived from an intersubspecific cross of cowpea (Vigna unguiculata (L.) Walp.). Breed Sci 50:161–172

    Google Scholar 

  • Uma MS, Salimath PM (2004) Evaluation of segregating populations of cowpea for slow rusting. J Arid Legume 1:181–182

    Google Scholar 

  • Uma MS, Hegde N, Hittalmani S (2016) Identification of SSR marker associated with rust resistance in cowpea (Vigna unguiculata L.) using bulk segregant analysis. Legume Res 39(1):39–42

    Google Scholar 

  • Whitney WK, Gilmer RM (1974) Insect vectors of cowpea mosaic virus in Nigeria. Ann Appl Biol 77:17–21

    CAS  PubMed  Google Scholar 

  • Wijesinghe CJ, Wijeratnam RSW, Samarasekara JKRR, Wijesundera RLC (2010) Biological control of Thielaviopsis paradoxa on pineapple by an isolate of Trichoderma asperellum. Biol Cont 53:285–290

    Google Scholar 

  • Wu X, Wang B, Wu X, Lu Z, Li G, Xu P (2018) SNP marker-based genetic mapping of rust resistance gene in the vegetable cowpea landrace ZN016. Legume Res 41(2):222–225

    Google Scholar 

  • Yongxue D, Longshu L, Zhino Z (1998) Development and reproduction of Callosobruchuschinensis (Coleoptera: Bruchidae) on four legume plant seeds. In: Proceedings of the 7th international working conference on stored-product protection, vol I, pp 107–108

    Google Scholar 

  • Zettler FW, Evans IR (1972) Blackeye cowpea mosaic virus in Florida: host range and incidence in certified cowpea seed. Proc FL State Hortic Soc 85:99–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Blair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahesha, H.S. et al. (2022). Development of Biotic Stress Resistant Cowpea. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-91043-3_4

Download citation

Publish with us

Policies and ethics