skip to main content
10.1145/3498361.3538924acmconferencesArticle/Chapter ViewAbstractPublication PagesmobisysConference Proceedingsconference-collections
research-article
Best Paper

OmniScatter: extreme sensitivity mmWave backscattering using commodity FMCW radar

Published:27 June 2022Publication History

ABSTRACT

Massive connectivity is a key to the success of the Internet of Things. While mmWave backscatter has great potential, substantial signal attenuation and overwhelming ambient reflections impose significant challenges. We present OmniScatter, a practical mmWave backscatter with an extreme sensitivity of -115 dBm. The performance is theoretically comparable to the popular commodity RFID EPC Gen2 (900 MHz), and is empirically validated via evaluations under various practical settings with abundant ambient reflections and blockages - e.g., In an office where a tag is locked in a wooden closet 6m away, as well in libraries and retail stores where a tag is placed across two rows of metal shelves. At the heart of OmniScatter is the new High Definition FMCW (HD-FMCW), which interplays with the tag (FSK) signal to disentangle the ambient reflections from the tag signal in the frequency domain, essentially offering immunity to ambient reflections. To further support practical deployment, OmniScatter offers coordination-free Frequency Division Multiple Access (FDMA) that effortlessly scales to thousands of concurrent tags. The readers were built on commodity radars and the tags were prototyped on PCB. The trace-driven evaluation demonstrates concurrent communication of 1100 tags with the BER < 1.5%, paving a pathway towards practical mmWave backscatter for everyday and anywhere use.

References

  1. Barton D. K. (ed), "Radars, Volume 3, Pulse Compression", Artech House 1975, 1978.Google ScholarGoogle Scholar
  2. Signals & Systems. McGraw-Hill Education Pvt Limited.Google ScholarGoogle Scholar
  3. Arduino UNO R3. https://docs.arduino.cc/hardware/uno-rev3.Google ScholarGoogle Scholar
  4. Atmel 2555 Internal RC Oscillator Calibration for tinyAVR and megaAVR Devices. https://www.microchip.com/en-us/application-notes?rv=1234ab57.Google ScholarGoogle Scholar
  5. Impinj Speedway RAIN RFID Readers for Flexible Solution Development. https://www.impinj.com/products/readers/impinj-speedway.Google ScholarGoogle Scholar
  6. Libero SoC v11.8 Archive. https://www.microsemi.com/product-directory/root/5485-libero-soc-v11-8-archive.Google ScholarGoogle Scholar
  7. M. Alloulah, Z. Radivojevic, R. Mayrhofer, and H. Huang. Kinphy: a kinetic in-band channel for millimetre-wave networks. In SenSys, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R. Ayyalasomayajula, A. Arun, C. Wu, A. Shaikh, S. Rajagopalan, Y. Hu, S. Ganesaraman, C. J. Rossbach, A. Seetharaman, E. Witchel, et al. Locap: Autonomous millimeter accurate mapping of wifi infrastructure. In NSDI, 2020.Google ScholarGoogle Scholar
  9. A. Bletsas, S. Siachalou, and J. N. Sahalos. Anti-collision backscatter sensor networks. IEEE Transactions on Wireless Communications, 8(10):5018--5029, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C. Boyer and S. Roy. Backscatter communication and rfid: Coding, energy, and mimo analysis. IEEE Transactions on Communications, 62(3):770--785, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  11. B. Chen, H. Li, Z. Li, X. Chen, C. Xu, and W. Xu. Thermowave: a new paradigm of wireless passive temperature monitoring via mmwave sensing. In MobiCom, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Z. Chi, X. Liu, W. Wang, Y. Yao, and T. Zhu. Leveraging ambient lte traffic for ubiquitous passive communication. In SIGCOMM, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Devices. Eval-tinyrad. https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-tinyrad.html.Google ScholarGoogle Scholar
  14. H. Friis. A note on a simple transmission formula. Proceedings of the IRE, 34(5):254--256, 1946.Google ScholarGoogle ScholarCross RefCross Ref
  15. R. Ghaffarivardavagh, S. S. Afzal, O. Rodriguez, and F. Adib. Ultra-wideband underwater backscatter via piezoelectric metamaterials. In SIGCOMM, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Y. Ghasempour, M. K. Haider, C. Cordeiro, D. Koutsonikolas, and E. Knightly. Multi-stream beam-training for mmwave mimo networks. In MobiCom, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. X. Guo, L. Shangguan, Y. He, J. Zhang, H. Jiang, A. A. Siddiqi, and Y. Liu. Aloba: Rethinking on-off keying modulation for ambient lora backscatter. In SenSys, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. K. Haider, Y. Ghasempour, D. Koutsonikolas, and E. W. Knightly. Listeer: mmwave beam acquisition and steering by tracking indicator leds on wireless aps. In MobiCom, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. F. Harris. On the use of windows for harmonic analysis with the discrete fourier transform. Proceedings of the IEEE, 66(1):51--83, 1978.Google ScholarGoogle ScholarCross RefCross Ref
  20. H. Hassanieh, O. Abari, M. Rodriguez, M. Abdelghany, D. Katabi, and P. Indyk. Fast millimeter wave beam alignment. In SIGCOMM, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Hessar, A. Najafi, and S. Gollakota. Netscatter: Enabling large-scale backscatter networks. In NSDI, 2019.Google ScholarGoogle Scholar
  22. Impinj. Rain rfid readers-connectivity devices for enterprise iot solutions. https://www.impinj.com/products/readers.Google ScholarGoogle Scholar
  23. T. Instruments. Mmwaveicboost. https://www.ti.com/tool/MMWAVEICBOOST.Google ScholarGoogle Scholar
  24. V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. Smith. Inter-technology backscatter: Towards internet connectivity for implanted devices. In SIGCOMM, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Jang and F. Adib. Underwater backscatter networking. In SIGCOMM. 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. C. Jiang, J. Guo, Y. He, M. Jin, S. Li, and Y. Liu. mmvib: micrometer-level vibration measurement with mmwave radar. In MobiCom, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Jin, Y. He, X. Meng, D. Fang, and X. Chen. Parallel backscatter in the wild: When burstiness and randomness play with you. In MobiCom, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Jin, Y. He, X. Meng, Y. Zheng, D. Fang, and X. Chen. Fliptracer: Practical parallel decoding for backscatter communication. IEEE/ACM Transactions on Networking, 27(1):330--343, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. Jung, J. Ryoo, Y. Yi, and S. M. Kim. Gateway over the air: towards pervasive internet connectivity for commodity iot. In MobiSys, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith. Passive wi-fi: Bringing low power to wi-fi transmissions. In NSDI, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. B. Kempke, P. Pannuto, B. Campbell, and P. Dutta. Surepoint: Exploiting ultra wideband flooding and diversity to provide robust, scalable, high-fidelity indoor localization. In SenSys, 2016.Google ScholarGoogle Scholar
  32. J. O. Lacruz, D. Garcia, P. J. Mateo, J. Palacios, and J. Widmer. mm-flex: an open platform for millimeter-wave mobile full-bandwidth experimentation. In MobiSys, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Lazaro, M. Lazaro, R. Villarino, D. Girbau, and P. de Paco. Car2car communication using a modulated backscatter and automotive fmcw radar. Sensors, 2021.Google ScholarGoogle Scholar
  34. Z. Li, B. Chen, Z. Yang, H. Li, C. Xu, X. Chen, K. Wang, and W. Xu. Ferrotag: A paper-based mmwave-scannable tagging infrastructure. In SenSys, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Z. Li and T. He. Webee: Physical-layer cross-technology communication via emulation. In MobiCom, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. X. Liu, Z. Chi, W. Wang, Y. Yao, P. Hao, and T. Zhu. Verification and redesign of OFDM backscatter. In NSDI, 2021.Google ScholarGoogle Scholar
  37. X. Liu, Z. Chi, W. Wang, Y. Yao, and T. Zhu. Vmscatter: A versatile mimo backscatter. In NSDI, 2020.Google ScholarGoogle Scholar
  38. C. X. Lu, S. Rosa, P. Zhao, B. Wang, C. Chen, J. A. Stankovic, N. Trigoni, and A. Markham. See through smoke: robust indoor mapping with low-cost mmwave radar. In MobiSys, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. C. X. Lu, M. R. U. Saputra, P. Zhao, Y. Almalioglu, P. P. de Gusmao, C. Chen, K. Sun, N. Trigoni, and A. Markham. milliego: single-chip mmwave radar aided egomotion estimation via deep sensor fusion. In SenSys, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Y. Ma, N. Selby, and F. Adib. Drone relays for battery-free networks. In SIGCOMM, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. M. H. Mazaheri, S. Ameli, A. Abedi, and O. Abari. A millimeter wave network for billions of things. In SIGCOMM. 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. H. Mazaheri, A. Chen, and O. Abari. mmtag: a millimeter wave backscatter network. In SIGCOMM, 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. P. Nikitin, K. Rao, S. Lam, V. Pillai, R. Martinez, and H. Heinrich. Power reflection coefficient analysis for complex impedances in rfid tag design. IEEE Transactions on Microwave Theory and Techniques, 53(9):2721--2725, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  44. I. Pefkianakis and K.-H. Kim. Accurate 3d localization for 60 ghz networks. In SenSys, 2018.Google ScholarGoogle Scholar
  45. Y. Peng, L. Shangguan, Y. Hu, Y. Qian, X. Lin, X. Chen, D. Fang, and K. Jamieson. Plora: A passive long-range data network from ambient lora transmissions. In SIGCOMM, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. Prabhakara, V. Singh, S. Kumar, and A. Rowe. Osprey: a mmwave approach to tire wear sensing. In MobiSys, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. S. Research. The next hyper-connected experience for all. Technical report, Samsung, 2020.Google ScholarGoogle Scholar
  48. T. I. Sandeep Rao. Introduction to mmwave sensing: Fmcw radars. https://training.ti.com/node/1139153.Google ScholarGoogle Scholar
  49. L. Shangguan and K. Jamieson. The design and implementation of a mobile rfid tag sorting robot. In MobiSys, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. V. Singh, S. Mondal, A. Gadre, M. Srivastava, J. Paramesh, and S. Kumar. Millimeter-wave full duplex radios. In MobiCom, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. E. Soltanaghaei, A. Dongare, A. Prabhakara, S. Kumar, A. Rowe, and K. White-house. Tagfi: Locating ultra-low power wifi tags using unmodified wifi infrastructure. IMWUT, 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. E. Soltanaghaei, A. Prabhakara, A. Balanuta, M. Anderson, J. M. Rabaey, S. Kumar, and A. Rowe. Millimetro: mmwave retro-reflective tags for accurate, long range localization. In MobiCom, 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. P. Sparks. The route to a trillion devices. 2017.Google ScholarGoogle Scholar
  54. S. Sur, I. Pefkianakis, X. Zhang, and K.-H. Kim. Wifi-assisted 60 ghz wireless networks. In MobiCom, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. S. Sur, I. Pefkianakis, X. Zhang, and K.-H. Kim. Towards scalable and ubiquitous millimeter-wave wireless networks. In MobiCom, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. S. Sur, X. Zhang, P. Ramanathan, and R. Chandra. Beamspy: Enabling robust 60 ghz links under blockage. In NSDI, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. V. Talla, J. Smith, and S. Gollakota. Advances and open problems in backscatter networking. GetMobile, 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. I. Technologies. Demo distance2go. https://www.infineon.com/cms/en/product/evaluation-boards/demo-distance2go/.Google ScholarGoogle Scholar
  59. F. Tonolini and F. Adib. Networking across boundaries: enabling wireless communication through the water-air interface. In SIGCOMM, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. A. Varshney, O. Harms, C. Pérez-Penichet, C. Rohner, F. Hermans, and T. Voigt. Lorea: A backscatter architecture that achieves a long communication range. In SenSys, 2017.Google ScholarGoogle Scholar
  61. A. Wang, V. Iyer, V. Talla, J. R. Smith, and S. Gollakota. Fm backscatter: Enabling connected cities and smart fabrics. In NSDI, 2017.Google ScholarGoogle Scholar
  62. J. Wang, L. Chang, O. Abari, and S. Keshav. Are rfid sensing systems ready for the real world? In MobiSys, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. J. Wang, J. Zhang, R. Saha, H. Jin, and S. Kumar. Pushing the range limits of commercial passive rfids. In NSDI, 2019.Google ScholarGoogle Scholar
  64. P. Wang, L. Feng, G. Chen, C. Xu, Y. Wu, K. Xu, G. Shen, K. Du, G. Huang, and X. Liu. Renovating road signs for infrastructure-to-vehicle networking: A visible light backscatter communication and networking approach. In MobiCom, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. S. Wang, J. Huang, and X. Zhang. Demystifying millimeter-wave v2x: Towards robust and efficient directional connectivity under high mobility. In MobiCom, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. T. Wei and X. Zhang. Pose information assisted 60 ghz networks: Towards seamless coverage and mobility support. In MobiCom, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. T. Wei, A. Zhou, and X. Zhang. Facilitating robust 60 ghz network deployment by sensing ambient reflectors. In NSDI, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Y. Wu, P. Wang, and C. Xu. Improving visible light backscatter communication with delayed superimposition modulation. In MobiCom, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Y. Wu, P. Wang, K. Xu, L. Feng, and C. Xu. Turboboosting visible light backscatter communication. In SIGCOMM, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Y. Xing, O. Kanhere, S. Ju, and T. Rappaport. Indoor wireless channel properties at millimeter wave and sub-terahertz frequencies. pages 1--6, 12 2019.Google ScholarGoogle Scholar
  71. X. Xu, Y. Shen, J. Yang, C. Xu, G. Shen, G. Chen, and Y. Ni. Passivevlc: Enabling practical visible light backscatter communication for battery-free iot applications. In MobiCom, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. P. Zhang, D. Bharadia, K. Joshi, and S. Katti. Hitchhike: Practical backscatter using commodity wifi. In SenSys, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. P. Zhang, M. Rostami, P. Hu, and D. Ganesan. Enabling practical backscatter communication for on-body sensors. In SIGCOMM, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. J. Zhao, W. Gong, and J. Liu. Spatial stream backscatter using commodity wifi. In MobiSys, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. J. Zhao, W. Gong, and J. Liu. Towards scalable backscatter sensor mesh with decodable relay and distributed excitation. In MobiSys, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. R. Zhao, T. Woodford, T. Wei, K. Qian, and X. Zhang. M-cube: A millimeter-wave massive mimo software radio. In MobiCom, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. R. Zhao, F. Zhu, Y. Feng, S. Peng, X. Tian, H. Yu, and X. Wang. Ofdma-enabled wi-fi backscatter. In MobiCom, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. F. Zhu, Y. Feng, Q. Li, X. Tian, and X. Wang. Digiscatter: efficiently prototyping large-scale ofdma backscatter networks. In MobiSys, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. OmniScatter: extreme sensitivity mmWave backscattering using commodity FMCW radar

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            MobiSys '22: Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services
            June 2022
            668 pages
            ISBN:9781450391856
            DOI:10.1145/3498361

            Copyright © 2022 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 27 June 2022

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate274of1,679submissions,16%

            Upcoming Conference

            MOBISYS '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader