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Motivation

Motivation: What are the factors?

Statistical Factor Analysis

Factor models are widely used in big data settings
Summarize information and reduce data dimensionality
Problem: Which factors should be used?

Statistical (latent) factors perform well

Factors estimated from Principle Component Analysis (PCA)
Weighted averages of all cross-section units
Problem: Hard to interpret

Goals of this paper:

Create interpretable sparse proximate factors

Shrink most small factor weights to zero to get proximate factors

⇒ More interpretable!
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Motivation

Contribution of this paper

Contribution

This Paper: Estimation of interpretable proximate factors

Key elements of estimator:

1 Statistical factors instead of pre-specified (and potentially
miss-specified) factors

2 Uses information from large panel data sets: Many cross
section units with many time observations

3 Proximate factors approximate latent factors very well with a
few cross section units without sparse structure in population
loadings

4 Only 5-10% of the cross-sectional observations with the largest
exposure are needed for proximate factors

2



Intro Illustration Model Empirical Results Conclusion Appendix

Motivation

Contribution

Theoretical Results

Asymptotic probabilistic lower bound for generalized correlations of
proximate factors with population factors

Guidance on how to construct proximate factors

Empirical Results

Very good approximation to population factors with 5-10%
cross-section units, measured by generalized correlation and variance
explained

Interpret statistical latent factors for

370 single-sorted anomaly portfolios
128 macroeconomic variables
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Motivation

Literature (partial list)

Large-dimensional factor models with PCA

Bai and Ng (2002): Number of factors
Bai (2003): Distribution theory
Fan et al. (2013): Sparse matrices in factor modeling
Fan et al. (2016): Projected PCA for time-varying loadings
Pelger (2019), Äıt-Sahalia and Xiu (2017): High-frequency
Kelly, Pruitt and Su (2017): IPCA

Factor models with penalty term

Bai and Ng (2017): Robust PCA with ridge shrinkage
Lettau and Pelger (2018): Risk-Premium PCA with pricing
penalty
Zhou et al. (2006): Sparse PCA (low dimension)
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Illustration

Illustration (more details later...)

Portfolio Data

Monthly return data from 07/1963 to 12/2016 (T = 638) for
N = 370 portfolios

Same data as in Lettau and Pelger (2018): 370 decile portfolios
sorted according to 37 anomaly characteristics, e.g. momentum,
volatility, turnover, size and volume,...

Estimate a 5-factor model with PCA as in Lettau and Pelger (2018)

Construct sparse factors with only 30 non-zero portfolio weights

⇒ 95% average correlation of proximate factors with PCA factors

⇒ Proximate factors explain 97% of the PCA variation, i.e. almost no
loss in information
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Illustration

Characteristic Sorted Portfolios: Fourth Factor

Hard to interpret...

Figure: Financial single-sorted portfolios: Portfolio weights of 4th PCA
factor.
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Illustration

Single-sorted Portfolios: Fourth Proximate Factor

The fourth proximate factor is a long-short momentum factor

⇒ Long-short extreme portfolios sorted by Industry Mom. Reversals,
Momentum (6m), Momentum (12m), Value-Momentum,
Value-Momentum-Prof.

Figure: Portfolio weights of 4th proximate factor with 30 nonzero entries.
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Model

The Model

Approximate Factor Model

Observe panel data of N cross-section units over T time periods:

Xi,t = Λi
1×K

>︸ ︷︷ ︸
loadings

Ft
K×1︸︷︷︸
factors

+ ei,t︸︷︷︸
idiosyncratic

i = 1, ...,N t = 1, ...,T

Matrix notation

X︸︷︷︸
N×T

= Λ︸︷︷︸
N×K

F>︸︷︷︸
K×T

+ e︸︷︷︸
N×T

N assets (large)
T time-series observation (large)
K systematic factors (fixed)

F , Λ and e are unknown 8
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Model

The Model

Approximate Factor Model

Systematic and non-systematic risk (F and e uncorrelated):

Var(X ) = ΛVar(F )Λ>︸ ︷︷ ︸
systematic

+ Var(e)︸ ︷︷ ︸
non−systematic

⇒ Systematic factors explain a large portion of the variance
⇒ Idiosyncratic risk can be weakly correlated
⇒ Motivation for Principal Component Analysis!

Steps in Latent Factor Estimation

1 Estimate factor weights W (based on variation objective function)

2 Factors: F̂ = X>W (W>W )−1

3 Loadings: Λ̂ = XF̂ (F̂>F̂ )−1

⇒ Note that factor weights W do not need to coincide with loadings Λ̂. 9
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Model

Estimation

Conventional PCA (Principal Component Analysis)

PCA of sample covariance matrix 1
T XX> − X̄ X̄>.

Eigenvectors of largest eigenvalues are weights and loadings Λ̂ = W .

Constructing Sparse Proximate Factors

Estimate eigenvectors W by applying PCA to 1
T XX> − X̄ X̄>

Sparse factor weights W̃k are obtained from PCA weights Wk by

Keeping the m weights with largest absolute value for each k
Shrinking the rest to 0.
Dividing by column norm, i.e. W̃>k W̃k = 1

Proximate factors F̃ = X>W̃ (W̃>W̃ )−1

Loadings of proximate factors Λ̃ = XF̃ (F̃>F̃ )−1
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Asymptotic results

Closeness between Proximate Factors and Latent Factors

Closeness measure

For 1-factor model: Correlation between F̃ and F .

Challenge with multiple factors:

Factors only identified up to invertible linear transformations
Need measure for closeness between span of two vector spaces

For multi-factor model: Measure distance between F̃ and F by
generalized correlation.

Total generalized correlation measure:

ρ = trace
(

(FTF/T )−1(FT F̃/T )(F̃T F̃/T )−1(F̃TF/T )
)

ρ = 0: F̃ and F are orthogonal
ρ = K : F̃ and F span the same space
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Intuition

Intuition: Why choose the largest PCA weights?

Consider 1 factor and 1 nonzero element in W̃ :
i.e. K = 1, m = 1.

Note that PCA weights W = Λ = [λ1,i ] ∈ RN×1.

Assume nonzero element in W̃1,i is W̃1,1 = 1.

F̃ = XT W̃ = FΛT W̃ + eT W̃

= f1λ1,1 + e1

Assume
f1,t ∼ (0, σ2

f ), e1,t
iid∼ (0, σ2

e )

f T1 f1
T
→ σ2

f ,
eT1 e1

T
→ σ2

e

Define signal-to-noise ratio s = σf
σe

12
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Intuition

Intuition: Why choose the largest PCA weights?

ρ = tr
(

(FTF/T )−1(FT F̃/T )(F̃T F̃/T )−1(F̃TF/T )
)

=

(
f T1 (f1λ1,1 + e1)/T

(f T1 f1/T )1/2((f1λ1,1 + e1)T (f1λ1,1 + e1)/T )1/2

)2

→
λ2

1,1

λ2
1,1 + 1/s2

(Generalized) correlation increases in size of loading |λ1,1|.
(Generalized) correlation increases in signal-to-noise ratio s.
No sparsity in population loadings assumed!

⇒ We provide probabilistic lower bound for (generalized)
correlation ρ given a target correlation level ρ0:

P(ρ > ρ0)
13
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Intuition

Intuition: Are Proximate Factors Consistent?

Proximate factors F̃ are in general not consistent.

Consider one-factor model

F̃ = XT W̃ (W̃>W̃ )−1 = FΛT W̃ (W̃>W̃ )−1+eT W̃ (W̃>W̃ )−1

Idiosyncratic component not diversified away

Assume ei ,t
iid∼ (0, σ2

e ), then eT W̃ satisfies

Var

(
m∑
i=1

W̃1,1i e1i ,t

)
= σ2

e 6→ 0

for fixed m.

14
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Intuition

Assumptions

Assumptions

Similar assumptions as in Bai and Ng (2002)

1 Factors: E ‖ft‖4 ≤ M <∞ and 1
T

∑T
t=1 ft f

T
t

P−→ ΣF for some K × K
positive definite matrix ΣF = diag(σ2

f1
, σ2

f2
, · · · , σ2

fr ).

2 Loadings: Random variables maxi ‖λj,i‖ = Op(1) and Λ>Λ/N → ΣΛ,
independent of factors and errors

3 Systematic factors: Eigenvalues of ΣΛΣF bounded away from 0 and ∞
4 Residuals: Weak Dependency

Bounded eigenvalues and sparsity of Σe

e weakly dependent with F
Light tails

⇒ Uniform convergence result for loadings ∀i , ∃H,

max
i≤N

∥∥∥λ̂(i) − Hλ(i)

∥∥∥ = Op

(
1√
N

+
N1/4

√
T

)
.

15
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Loadings

Loadings of Proximate Factors

Theorem 1: Consistency of loadings

The loadings of proximate factors converge to the population loadings:

ρΛ̃,Λ
P−→ K .

where ρΛ̃,Λ is the generalized correlation for the loadings:

ρΛ̃,Λ = tr
(

(Λ>Λ/N)−1(Λ>Λ̃/N)(Λ̃>Λ̃/N)−1(Λ̃>Λ/N)
)
.

Loadings span the same vector space
⇒ same results in cross-sectional regressions, etc.

Does not guarantee pointwise convergence
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One Factor Case

One Factor Case: Correlation of Proximate Factors

Theorem 2: Lower bound for correlation

Assume: K = 1 factor and there exists sequences of constants
{a1,N > 0} and {b1,N} such that

P((|λ1,(1)| − b1,N)/a1,N ≤ z)→ G1(z),

Then for N,T →∞

P (ρ ≥ ρ0) ≥ 1− G1,m(z) + op(1)

ρ0 =
σ2
f1

(a1,Nz + b1,N)2

1+h(m)
m σ2

e + σ2
f1

(a1,Nz + b1,N)2

G1 is the Generalized Extreme Value (GEV) distribution function,

G1 = exp

{
−
[

1 + ξ

(
z − µ
σ

)]−1/ξ
}

17
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One Factor Case

One Factor Case: Extreme value theory

A few examples for G1 and a1,N and b1,N for λ1,i :

1 G1 ∼ Gumbel distribution:

Standard normal distribution (λi ∼ N(0, 1)): a1,N = 1
Nφ(b1,N )

and b1,N = Φ−1(1− 1/N), where φ(·),Φ(·) are pdf and cdf of
standard normal.
Exponential distribution (λi ∼ exp(1)): a1,N = 1, b1,N = N

2 G1 ∼ Frechet distribution:

Fλ(x) = exp(−1/x): a1,N = N, b1,N = 0.

3 G1 ∼ Weibull distribution:

Uniform: distribution (λi ∼ Uniform(0, 1)):
a1,N = 1/N, b1,N = 1.

⇒ allows λ1,i to be cross-sectionally dependent, characterized by an
extremal index θ appearing in G1

18
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One Factor Case

One Factor Case: Comparative Statics

For target probability p = 1− G1,m(z) , the threshold

ρ0 =
σ2
f1

(a1,Nz+b1,N )2

1+h(m)
m σ2

e+σ2
f1

(a1,Nz+b1,N )2
s.t. P(ρ ≥ ρ0) ≥ p + op(1) satisfies

ρ0 increases in the signal-to-noise ratio s = σf1/σe

ρ0 increases in the dispersion of loadings’ distribution

ρ0 increases in # nonzeros m and N (from simulation)

ρ0 decreases in h(m)
(h(m) measures correlation in idiosyncratic errors)
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Multi-Factor Case

Multi Factors

Challenges

Thresholded weights/proximate factors are in general not orthogonal
to each other

Generalized correlation takes this into account

Additional Assumptions

1 Each cross section unit has only very large exposure to one factor

2 Tail distributions for each factor loading asymptotically independent

⇒ Needed only for theoretical derivation, but not for this approach to
work in simulation and empirical applications

⇒ Assumptions can be relaxed: some cross section units have only
large exposure to one factor after rotation by some matrix
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Multi-Factor Case

Multi Factors

Theorem 3: Distribution of generalized correlation

The asymptotic lower bound equals

lim
N,T→∞

P (ρ ≥ ρ0) ≥
K∏
j=1

(
1− G∗j,m(τ)

)
− lim

N→∞
P(σmin(B) < γ) (1)

ρ0 = K − (1 + h(m))σ2
e

mγ2

K∑
j=1

1

sju2
j,N(τ)

,

where S = diag(s1, s2, · · · , sK ) are the eigenvalues of ΣFΣΛ in decreasing
order and 0 < γ < 1.

⇒
∏K

j=1

(
1− G∗j,m(τ)

)
: product of loadings’ tail distributions

(asymptotically independent)

⇒ B ∝ S1/2Λ>Λ̃. P(σmin(B) < γ): σmin(B) measures how correlated
one thresholded loading is to other population factor loadings

21



Intro Illustration Model Empirical Results Conclusion Appendix

Empirical Results

Characteristic Sorted Portfolios

Portfolio Data (... continued)

Monthly return data from 07/1963 to 12/2016 (T = 638) for
N = 370 portfolios

Same data as in Lettau and Pelger (2018): 370 decile portfolios
sorted according to 37 anomaly characteristics, e.g. momentum,
volatility, turnover, size and volume,...

Estimate latent factors with PCA as in Lettau and Pelger (2018)

Construct sparse factors with only m = 30 non-zero portfolio
weights.

⇒ 95% Average correlation of proximate factors with PCA factors

⇒ Proximate factors explain 98% of the PCA variation, i.e. almost no
loss in information

22
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Empirical Results

Characteristic Sorted Portfolios

(a) Generalized Correlation (b) Variance Explained

Results for different number of factors K and sparsity levels m.

Normalized generalized correlation ρ/K close to 1 implies same span

⇒ m = 30 achieves average correlation of 0.95%

⇒ m = 30 explains almost the same amount of variation as PCA.
23
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Empirical Results

Characteristic Sorted Portfolios

m F̂1 F̂2 F̂3 F̂4 F̂5

10 0.993 0.992 0.771 0.918 0.837
20 0.995 0.948 0.883 0.949 0.890
30 0.996 0.965 0.935 0.966 0.910
40 0.997 0.971 0.958 0.975 0.923

Table: R2 from regression of each PCA factor F̂j on all proximate factors

F̃ for K = 5.

R2 corresponds to generalized correlation between each F̂j and all F̃ .

⇒ Proximate factors almost perfectly span the PCA factors with
m = 30.
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Empirical Results

Macroeconomic data

Macroeconomic Data

128 Monthly U.S. macroeconomic indicators from from 01/1959 to
02/2018 from McCracken and Ng (2016): N = 128 and T = 707

McCracken and Ng (2016) suggest K = 8 factor model.

8 different categories:

1 output and income
2 labor market
3 housing
4 consumption, orders and inventories
5 money and credit
6 interest and exchange rates
7 prices
8 stock market

25
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Empirical Results

Macroeconomic Data

(a) Generalized Correlation (b) Variance Explained

Results for different number of factors K and sparsity levels m.

Normalized generalized correlation ρ/K close to 1 implies same span

⇒ m = 10 achieves average correlation of 0.95%

⇒ m = 10 explains almost the same amount of variation as PCA.
26
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Empirical Results

Macroeconomic Data

m F̂1 F̂2 F̂3 F̂4 F̂5 F̂6 F̂7 F̂8

10 0.953 0.959 0.949 0.953 0.961 0.799 0.833 0.767
15 0.967 0.970 0.958 0.956 0.964 0.857 0.867 0.837
20 0.977 0.974 0.957 0.963 0.961 0.905 0.919 0.891
25 0.983 0.980 0.961 0.979 0.973 0.937 0.943 0.929

Table: R2 from regression of each PCA factor F̂j on all proximate factors

F̃ for K = 8.

R2 corresponds to generalized correlation between each F̂j and all F̃ .

⇒ Proximate factors closely span the PCA factors with m = 10.
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Empirical Results

Macroeconomic Data: Interpretation of Factors

Figure: Non-zero weights by group for K = 8 factors and m = 10
non-zero entries.

Proximate factors have clear patterns in weights.

Interpretation of factors: (1) Productivity, (2) Price, (3) Interest,
(4) Exchange-Rate, (5) Housing, (6)Finance/Labor, (7)
Finance/Productivity, (8) Labor/Rates 28
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Conclusion

Conclusion

Methodology

Proximate factors (portfolios of a few cross-section units) for latent
population factors (portfolios of all cross-section units)

Simple thresholding estimator based on largest loadings

Proximate factors approximate population factors well without
sparsity assumption

Asymptotic probabilistic lower bound for (generalized) correlation

⇒ A few observations summarize most of the information

Empirical Results

Good approximation to population factors with 5-10% cross-section
units

29
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Relationship with Lasso: Sparse PCA

Alternative approach with Lasso:

1 Estimate factors by PCA, i.e XTXF̂ = F̂V with V matrix of
eigenvalues.

2 Estimate loadings by minimizing
∥∥∥X − ΛF̂T

∥∥∥2

F
+ α ‖Λ‖1. Divide the

minimizer by its column norm (standardize each loading) to obtain Λ̄

3 Proximate factors from Lasso approach are F̄ = XT Λ̄(Λ̄T Λ̄)−1

⇒ Same selection of non-zero elements (for one factor case) but
different weighting

⇒ Under certain conditions worse performance than thresholding
approach

Tuning parameter less transparent

Note that conventional sparse PCA assumes sparse loadings Λ and
sparse factor weights W and sets them equal.

A 1



Intro Illustration Model Empirical Results Conclusion Appendix

Characteristic Sorted Portfolios: Sparse PCA

(a) Generalized correlations (b) RMSE

Figure: Generalized correlations for factors and loadings and RMSE for
proximate PCA (PPCA), sparse PCA (SPCA) and modified sparse PCA
with second stage loading regression. α is the `1 penalty for SPCA with
m chosen accordingly.

A 2
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Macroeconomic data: Sparse PCA

(a) Generalized correlations (b) RMSE

Figure: Macroeconomic data: Generalized correlations for factors and
loadings and RMSE for proximate PCA (PPCA), sparse PCA (SPCA)
and modified sparse PCA with second stage loading regression. α is the
`1 penalty for SPCA with m chosen accordingly.

A 3
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Multiple Factors

Multiple Factor: Rotate and threshold

Assume there exists orthonormal matrix P s.t. large values in columns of
W P = ΛHSP do not overlap (almost orthogonal)

m nonzero entries in W̃j are the largest in Ŵj satisfying
maxj,k 6=j |ŵP

i,k/ŵ
P
i,j | < c and are standardized by

W̃ P =

[
ŴP

1 �M1

‖ŴP
1 �M1‖

ŴP
2 �M2

‖ŴP
2 �M2‖ · · · ŴP

K�MK

‖ŴP
K
�MK‖

]
.

The proximate factors are

F̃P = XTW̃ P((W̃ P)TW̃ P)−1 = XTW̃ P

Generalized Correlation

ρ = tr
(

(FTF/T )−1(FT F̃P/T )((F̃P)T F̃P/T )−1((F̃P)TF/T )
)

A 4
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Multiple Factors

Theorem 4: Rotate and threshold

Let w̄P
(m),j be the m-th order statistic of the entries in |wP

j | that satisfy

maxj,k 6=j |wP
i,k/w

P
i,j | < c and assume that the cumulative density function of

w̄P
(m),j is continuous. Then for a particular threshold 0 < ρ0 < K and a fixed m,

we have

lim
N,T→∞

P(ρ > ρ0) ≥ lim
N→∞

P

(
K∑
j=1

1

(w̄P
(m),j)

2
<

m(1− γ)(K − ρ0)

(1 + f (m))σ2
e

)
, (2)

where γ = c(2 + c(K − 2))(K(K − 1))1/2.

A 5
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Simulation

Compare probabilistic lower bounds with Monte-Carlo
simulations

Factors: K = 1 or K = 2 and Ft ∼ N(0, σ2
f )

Loadings: λi ∼ N(0, 1) i.i.d.

Residuals: σe = 1 and et,i ∼ N(0, 1) i.i.d.

Vary signal-to-noise ratio with σf ∈ {0.8, 1.0, 1.2}
N = 100) and T ∈ {50, 100, 200}
We analyze:

Probabilistic lower bound for ρ0 = 0.95
Distribution of lower bound with extreme value distribution

A 6
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Simulation: One factor with very strong signal

Figure: Probabilistic lower bound: σf = 1.2, ρ0 = 0.95

A 7
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Simulation: One factor with weaker signal

Figure: Probabilistic lower bound: σf = 1.0, ρ0 = 0.95

A 8
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Simulation: One factor with weak signal

Figure: Probabilistic lower bound: σf = 0.8, ρ0 = 0.95

A 9



Intro Illustration Model Empirical Results Conclusion Appendix

Simulation: One factor with increasing N

(a) One-factor model
(σf = 1.0)

(b) Multi-factor model
(σf = [1.2, 1.0])

Figure: Probabilistic lower bound: ρ0 = 0.95

A 10
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Simulation: Two Factors

(a) σf = [1.0, 0.8], (b) σf = [1.2, 1.0] (c) σf = [1.5, 1.2]

Figure: Probabilistic lower bound: ρ0 = 1.9.

A 11
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Empirical Application: Size and Investment Portfolios

25 portfolios formed on size and investment
(07/1963-10/2017, 3 factors, daily data)

(a) Generalized correlation (b) Variance explained

(c) RMS pricing error (d) Max Sharpe Ratio A 12
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Empirical Application: Size and Investment Portfolios

Figure: Portfolio weights of 1. statistical factor

⇒ Equally weighted market factor

A 13
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Empirical Application: Size and Investment Portfolios

Figure: Portfolio weights of 2. statistical factor

⇒ Small-minus-big size factor

⇒ Proximate factor with 4 largest weights correlation 0.97 with size
factor

A 14
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Empirical Application: Size and Investment Portfolios

Figure: Portfolio weights of 3. statistical factor

⇒ High-minus-low value factor

⇒ Proximate factor with 4 largest weights correlation 0.79 with
investment factor

A 15
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Single-sorted Portfolios: First Proximate Factor

The first proximate factor is a market factor.

Figure: Portfolio weights of 1st proximate factor with 30 nonzero entries.

A 16
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Single-sorted Portfolios: Second Proximate Factor

The second proximate factor has large (in absolute value) loadings
of value/growth related portfolios.

Figure: Portfolio weights of 2nd proximate factor with 30 nonzero entries.

A 17
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Single-sorted Portfolios: Third Proximate Factor

The third proximate factor loads most on momentum and
profitability-related portfolios.

Figure: Portfolio weights of 3rd proximate factor with 30 nonzero entries.

A 18
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Single-sorted Portfolios: Fifth Proximate Factor

The fifth proximate factor a “high SR” factor.

Figure: Portfolio weights of 5th proximate factor with 30 nonzero entries.

A 19
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Single-sorted portfolios

Anomaly characteristics Anomaly characteristics

1 Accruals - accrual 20 Momentum (12m) - mom12
2 Asset Turnover - aturnover 21 Momentum-Reversals - momrev
3 Cash Flows/Price - cfp 22 Net Operating Assets - noa
4 Composite Issuance - ciss 23 Price - price
5 Dividend/Price - divp 24 Gross Protability - prof
6 Earnings/Price - ep 25 Return on Assets (A) - roaa
7 Gross Margins - gmargins 26 Return on Book Equity (A) - roea
8 Asset Growth - growth 27 Seasonality - season
9 Investment Growth - igrowth 28 Sales Growth - sgrowth
10 Industry Momentum - indmom 29 Share Volume - shvol
11 Industry Mom. Reversals - indmomrev 30 Size - size
12 Industry Rel. Reversals - indrrev 31 Sales/Price - sp
13 Industry Rel. Rev. (L.V.) - indrrevlv 32 Short-Term Reversals - strev
14 Investment/Assets - inv 33 Value-Momentum - valmom
15 Investment/Capital - invcap 34 Value-Momentum-Prof. - valmomprof
16 Idiosyncratic Volatility - ivol 35 Value-Protability -valprof
17 Leverage - lev 36 Value (A) - value
18 Long Run Reversals - lrrev 37 Value (M) - valuem
19 Momentum (6m) - mom

A 20
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