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Introduction



Designing experiments with staggered rollouts

• Estimating treatment effects in panel data with staggered rollouts

• Units i ∈ {1, · · · ,N} observed in time periods s ∈ {1, · · · ,T}
• Design: Treatment assignment Zis ∈ {0, 1}
• Potential outcomes: Yis(zi,s−ℓ, · · · , zis) may depend on the history of

treatment to date, with known ℓ periods of history that matter

• Observed outcomes: Yis = Yis(Zi,s−ℓ, · · · ,Zis)

• Staggered rollout designs commonly encountered in observational data:

• Products/promotions released in different regions at different times

• State regulations adopted over time

• Question: How should analyst design a staggered rollout experiment?

• How fast should rollout occur?

• How does rollout depend on hypothesized maximum duration of

carryover effects?

• How can historical data be used to optimize design?

• Can an adaptive design, where analyst updates speed of rollout and

termination based on data collected during experiment, improve

performance?
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Panel experiments with staggered rollouts

Formal objective: Propose experimental designs that optimize the precision of

post-experiment estimates of treatment effects

Focus on environment with: Irreversible treatment adoption pattern

(Zis ≤ Zi,s+1)

Time

SF 1 1 1 · · · · · ·
BOS 0 1 1 · · · · · ·
ATL 0 0 1 · · · · · ·
...

...
...

...
...

...
...

...

0 denotes control and 1 denotes treated
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Contribution: Non-adaptive experiments

Non-adaptive experiments: N and T are set, and treatment decisions are

made, pre-experiment

• Assume after experiment will use GLS to estimate instantaneous and

lagged treatment effects from nonstationary observed outcomes

• Analytical optimality conditions for the designs that maximize linearly

combined precisions of estimated instantaneous and lagged effects

• Propose an algorithm to choose a treatment design based on the

optimality conditions. The design has two features

⇒ Fraction of treated units per period takes an S-shaped curve:

Treatment rollouts slowly at the beginning and end, and quickly in

the middle

• Bigger ℓ leads to more pronounced S

⇒ This rollout pattern is imposed for each stratum of units with the

same observed and estimated latent covariate values
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Illustration of optimal assignment
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Contribution: Adaptive experiments

Adaptive experiments: N is fixed, but the experiment can be terminated early.

Treatment decisions are updated after each period’s data is collected

• Propose the Precision-Guided Adaptive Experiment (PGAE) algorithm

• adaptively terminates the experiment based on the estimated precision

• adaptively optimizes speed of rollout using dynamic programming

• an estimation scheme of treatment effects based on sample splitting

• Derive the asymptotic normal distribution of final treatment effect and

variance estimates from PGAE

• Optimal convergence rate and no efficiency loss of final treatment

effect estimate, as compared to an oracle with access to the same

design a-priori
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Related literature (partial list)

• Most closely related to stepped wedge designs in clinical trials (Hussey and

Hughes 2007, Hemming et al. 2015, Li, Turner, and Preisser 2018)

⇒ We study the design under a more general outcome specification,

where cumulative effects can vary with treatment duration

• Recently proposed alternative designs for estimation of carryover effects

• Minimax temporal experimental design (Basse, Ding, and Toulis 2019)

• Switchback design (Bojinov, Simchi-Levi, and Zhao 2020)

• Synthetic control design that selects units for (simultaneous)

treatment, anticipating synthetic control estimation (Doudchenko et

al. 2021a,b, Abadie and Zhao 2021)

⇒ Our design leverages variation of treatment times across units and

maximizes the precision of treatment effect estimates

• Recently proposed designs in settings with interference

• Multiple randomization designs (Bajari et al. 2021, Johari et al. 2022)

• Equilibrium designs (Wager and Xu 2021)

⇒ Our experiment is run at the aggregate level and leverages the time

dimension to increase power

⇒ We also consider adaptive designs; above papers pre-specify design
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Two examples for staggered rollout experiments

Example 1 (marketplace experiments): A ride-hailing platform plans to test

the impact of a new app feature that improves driver experience

Example 2 (public health intervention): A country aims to measure the effect

of a new public health intervention (e.g., encouraging the use of masks or

social distancing policies) on the spread of an infectious disease

Staggered rollout experiments run at the city level for multiple time periods can

• avoid bias from interference

• facilitate the estimation of cumulative effects

• better design can improve the estimation precision of cumulative effects
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Setup



Potential outcomes and treatment effects

• The potential outcomes for unit i at time s can be written as

Yis(zi,s−ℓ, · · · , zi,s−1, zis)

for a nonnegative, known integer ℓ (ℓ: duration of treatment effects)

• Let the average instantaneous effect τ0 and j-th period lagged effect τj be

τj :=
1

NT

∑
i,s

[
Yis(0, · · · , 0, 1︸︷︷︸

zi,s−j

, 1, · · · , 1)−Yis(0, · · · , 0, 0︸︷︷︸
zi,s−j

, 1, · · · , 1)
]
,

for all j ∈ {0, 1, · · · , ℓ}

• Let the average cumulative effect of treatment for j periods be

τ0 + · · ·+ τmin(ℓ,j−1)

that is constant for j > ℓ
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Illustrative examples of cumulative effects

−3 −1 1 3 5 7 9
week

w
or

k
in

g
h

ou
rs

control

treated

Cumulative effect of treatment for j periods with ℓ = 5, τ0, τ1 > 0 and τ2, τ3, τ4, τ5 < 0
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Illustrative examples of cumulative effects

−5 −3 −1 1 3 5 7
month

n
ew
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ct
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n
s
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treated

Cumulative effect of treatment for j periods with ℓ = 2 and τ0, τ1, τ2 < 0
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Outcome specification

A general outcome specification for treatment effect estimation post-experiment

Yis = αi + βs + X⊤
i θs + τ0zis + τ1zi,s−1 + · · ·+ τℓzi,s−ℓ + u⊤

i vs + εis︸ ︷︷ ︸
eis

• αi : unknown unit fixed effect

• βs : unknown time fixed effect

• Xi : observed covariates; θs : unknown time-varying coefficients

• ui : latent covariates; vs : latent coefficients

• εis : iid residual with mean 0 and variance σ2

11



Decision making problem

Decision: Optimally choose the treatment times for each unit

Goal: Most precisely estimate average instantaneous and lagged effects

Implication: Reduce sample size requirement and lower the experimental cost!

Time

SF 1 1 1 · · · · · ·
BOS 0 1 1 · · · · · ·
ATL 0 0 1 · · · · · ·
...

...
...

...
...

...
...

...

0 denotes control and 1 denotes treated

0 0
Zff ?

1 1

0 1
Zba?

0 1

0 0
Zffba?

0 1
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Non-adaptive experiments



Estimation of average treatment effects

GLS estimator τ̂0, · · · , τ̂ℓ from the specification

Yis = αi + βs + X⊤
i θs + τ0zis + τ1zi,s−1 + · · ·+ τℓzi,s−ℓ + eis ,

• GLS is the best linear unbiased estimator (BLUE)

• Precision matrix (inverse of variance-covariance matrix) of τ̂0, · · · , τ̂ℓ,
denoted by Prec(τ̂0, · · · , τ̂ℓ;Z), is a quadratic function of

Z = [zis ](i,s)∈[N]×[T ], where [N] stands for {1, 2, · · · ,N}
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Designs of non-adaptive experiments

Trace(T)-optimal design: Choose Z = [zis ](i,s)∈[N]×[T ] pre-experiment to

maximize the trace of the precision matrix (Pukelsheim, 2016)

max
Z

trace(Prec(τ̂0, · · · , τ̂ℓ;Z))

s.t. zis ≤ zi,s+1

zis ∈ {0, 1}

Other objective functions, for example, determinant(D)-optimal design and

A-optimal design

• No analytical solutions in general

• Numerical solutions for D-optimal design in the paper
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Optimal solution (No covariates)

Yis = αi + βs + τ0zis + τ1zi,s−1 + · · ·+ τℓzi,s−ℓ + εis (1)

Theorem 1: Optimal solution (no covariates)

Under the specification (1), εis
i.i.d.∼ (0, σ2) and τj is estimated from OLS.

Then any treatment design is optimal if it satisfies

ωs =
1

N

∑
i

Zis = ω∗
ℓ,s .

If ℓ = 0, then ω∗
ℓ,s = (2s − 1)/(2T ).

For general ℓ, ω∗
ℓ,s has five stages, and the expression of ω∗

ℓ,s is provided in

the paper.
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Visualization of ω∗
ℓ,s in optimal solution
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Visualization of ω∗
ℓ,s in optimal solution
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Visualization of ω∗
ℓ,s in optimal solution
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Visualization of ω∗
ℓ,s in optimal solution
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Visualization of ω∗
ℓ,s in optimal solution
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Visualization of ω∗
ℓ,s in optimal solution
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Optimal solution (Adding observed and/or latent covariates)

Yis = αi + βs + X⊤
i θs + τ0zis + τ1zi,s−1 + · · ·+ τℓzi,s−ℓ + u⊤

i vs + εis︸ ︷︷ ︸
eis

(2)

Theorem 1: Optimal solution (with covariates)

Under the specification (2), εis
i.i.d.∼ (0, σ2), both Xi and ui are demeaned,

and τj is estimated from infeasible GLS. Then any treatment design is optimal

if it satisfies

• ωs = N−1 ∑
i Zis = ω∗

ℓ,s

• N−1 ∑
i XiZis is fixed for all s

• N−1 ∑
i uiZis is fixed for all s
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Interpretation of optimal solution (with covariates)

With Xi only: Stratification if Xi is discrete-valued

• Each stratum (group of units with the same Xi )

satisfies the treated fraction conditions ω∗
ℓ,s

(possibly with rounding)

With ui : ui is unknown in practice

• Estimate ui using historical data

• Partition units into strata based on ûi

An algorithm proposed in the paper to choose a treat-

ment design

Xi =x1


0 0

0 1

0 1

1 1

Xi =x2


0 0

0 1

0 1

1 1
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Adaptive experiments



Decisions for adaptive experiments

Goal: Most precisely estimate average treatment effects with valid inference,

using the least sample size

Two adaptive decisions:

• Stop the experiment early if the desired precision is achieved (i.e., max

duration is Tmax, and duration T̃ ∈ [Tmax] is a random variable)

• Speed of treatment rollout for the next time period is determined after

each period’s outcomes are collected

This talk: Focus on a simpler specification

Yis = αi + βs + τ0zis + εis
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Decision 1: Experiment termination rule

Terminate the experiment if the precision exceeds a target threshold c at time t

(Glynn and White 1992)

Prec(τ̂0;Z) ≥ c

where Z ∈ {0, 1}N×t and

Prec(τ̂0;Z) =
Nt

σ2
· (−2b⊤

t ω1:t − ω⊤
1:tP1tω1:t)/t︸ ︷︷ ︸

gτ (ω,t)

with

• ω1:t = [ωs ]s∈[t] and ωs = N−1 ∑
i Zis

• P1t = It − 1t1
⊤
t /t and bt is a vector of constants

• σ2 = E[ε2it ]

⇒ Termination rule needs key unknown parameter σ2

⇒ Implement termination rule in a way that allows for valid inference of τ0

(due to the peeking challenge in sequential testing (Johari et al. 2017))
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Decision 2: Treatment assignment

T̃ is unknown for adaptive experiments, therefore infeasible to optimally choose

the speed of treatment rollout, pre-experiment

ω∗
0,s = (2s − 1)/(2T )
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Three competing goals in adaptive experiments

Goal 1: Choosing a treatment design

• Adaptively choose the speed of rollout, as we gather more information

about σ2 during the experiment

Goal 2: Implementing the termination rule

• Estimate σ2 to make the next challenge manageable

Goal 3: Efficient estimation and valid inference for τ0

• Use as many observations as possible

Propose the Precision-Guided Adaptive Experiment (PGAE) algorithm

• simultaneously achieves the three goals

• uses sample splitting and dynamic programming
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PGAE: Sample splitting

Partition units into non-adaptive treatment units (NTU) and adaptive

treatment units (ATU)

• NTU: Treatment design set pre-experiment (a small set)

• Set as ωbm,s = (2s − 1)/(2Tmax) (optimal solution for Tmax)

• ATU: Treatment design chosen adaptively
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Component 1 in PGAE: Choosing a treatment design

At time t, estimate distribution of σ2 from NTU

• Estimate σ2 = E[ε2it ] and variance of ε2it , i.e., ξ
2 = E[(ε2it − σ2)2]

• Normal approximation of the distribution of σ2 (based on the asymptotic

normality of σ̂2)

Update belief about T̃ , denoted by Pt(T̃ ), using the estimated distribution of

σ2
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Component 1 in PGAE: Choosing a treatment design

At time t, optimize ωt+1 for ATU1 and ATU2 through dynamic programming

(DP)

• In the DP, no intermediate cost and terminal cost is the precision at

termination, i.e., Prec(τ̂0;Z:,1:T̃ ) = (NT̃/σ2) · gτ (ω, T̃ )

• Solve ωt+1 from DP based on the belief about T̃
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Component 2 in PGAE: Implementing the termination rule

Estimate σ2 from ATU1 and ̂Prec(τ̂0;Z:,1:t) = (Nt/σ̂2) · gτ (ω, t)

If ̂Prec(τ̂0;Z:,1:t) ≥ c, terminate the experiment; otherwise, keep running the

experiment
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Component 3 in PGAE: Efficient estimation and valid inference

Post-experiment,

• τ̂all,T̃ : estimator of τ0 using all N units and T̃ periods of data (no

efficiency loss)

• σ̂2
atu,2,T̃ : estimator of σ2 using T̃ periods of data of ATU2
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Asymptotic properties of PGAE

Theorem 2: Asymptotic distribution of estimators from PGAE

Suppose εis is bounded with a symmetric distribution around 0. As N →∞,

√
N ·

(T̃ gτ (ωall,1:T̃ , T̃ )/σ2
)1/2 · (τ̂all,T̃ − τ0

)
(
T̃ patu,2/ξ

†2
T̃

)1/2 · (σ̂2
atu,2,T̃ − σ2

)
 d−→ N (0, I2) , (3)

where ξ†
T̃
=

[
ξ2 + σ4/(T̃ − 1)

]1/2
and ξ2 = E[(ε2it − σ2)2].

• τ̂all,T̃ is consistent for τ with the optimal convergence rate
√
N

• Intuition: Asymptotic conditional mean of εis on estimated even

moments of εis is zero (due to the symmetric distribution of εis)

• σ̂2
atu,2,T̃ is consistent for σ2

• Intuition: A different sample is used to estimate σ̂2
atu,2,T̃
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Asymptotic properties of PGAE

Theorem 2: Asymptotic distribution of estimators from PGAE

Suppose εis is bounded with a symmetric distribution around 0. As N →∞,

√
N ·

(T̃ gτ (ωall,1:T̃ , T̃ )/σ2
)1/2 · (τ̂all,T̃ − τ0

)
(
T̃ patu,2/ξ

†2
T̃

)1/2 · (σ̂2
atu,2,T̃ − σ2

)
 d−→ N (0, I2) , (4)

where ξ†
T̃
=

[
ξ2 + σ4/(T̃ − 1)

]1/2
and ξ2 = E[(ε2it − σ2)2].

• The adaptivity of the design, with the termination time depending on early

values of the outcomes, comes at no cost in the estimation of τ0

• Compare with a series of experiments with the same distribution of

termination times, the average variance of τ̂all,T̃ is the same

• Adaptive treatment decisions improve the estimation precision of τ0

• gτ (ωall,1:T̃ , T̃ ) is increased through adaptive treatment decisions
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Empirical application



Empirical application

MarketScan medical claims databases

• Inpatient and outpatient claim records from early 2007 to mid 2017

• Primary diagnosis is influenza 21, 277 inpatient and 9, 678, 572 outpatient

admissions

Study effect of interventions (e.g., face cover, social distancing, and vaccine)

on flu occurrence rate

• Aggregate at the Metropolitan Statistical Area (MSA) level and month

• Focus on the flu peak season (October to April)

Other applications (medical home visits, grocery expenditure, and Lending Club

loans) are in the paper
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Comparison of non-adaptive designs

Benchmark designs

• Zff : 50% control and 50% treated for all time periods

• Zba: first half time periods all control, and second half all treated

• Zffba: first half time periods all control, and second half half treated

Non-adaptive staggered designs

• Zopt : nonlinear staggered design with ωs = ω∗
ℓ,s

• Zopt,linear : linear staggered design with ωs = ω∗
0,s = (2s − 1)/(2T )

• Zopt,stratified : nonlinear staggered design with ωs = ω∗
ℓ,s and historical data

used for stratification

0 0

0 0

1 1

1 1

Zff

0 1

0 1

0 1

0 1

Zba

0 0

0 0

0 1

0 1

Zffba

0 0

0 1

0 1

1 1

staggered designs
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Synthetic non-adaptive experimental data and evaluation metrics

Synthetic non-adaptive experimental data

• Assume the synthetic treatment was not applied to the original data, so

observed value = Yis(0)

• Apply a synthetic treatment using Z and obtain synthetic experimental

data

Yis = Yis(0) + τ0 · Zis + τ1 · Zi,s−1 + τ2 · Zi,s−2

Evaluation metrics

• Estimate τ0, τ1 and τ2 from Yit , and compare
∑

j(τ̂j − τj)
2 from the data

generated by various Z

• Other evaluation metrics (estimation error of cumulative effects, recall and

“precision”) in the paper
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Results for synthetic non-adaptive experiments

30 40 50
N

0

2

4

∑
j
(τ̂
j
−
τ j

)2

Zff

Zba

Zffba

Zopt

30 40 50
N

0.10

0.15

0.20

∑
j
(τ̂
j
−
τ j

)2

Zopt,linear

Zopt

Zopt,stratified

• Zopt requires fewer than 50% units to achieve the same estimation error as

Zff , Zba, and Zffba

• Zopt,stratified further saves at least 20% units to achieve the same estimation

error as Zopt and Zopt,linear

⇒ Using our solution with historical data can substantially reduce the

experimental cost
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Synthetic adaptive data

Synthetic adaptive experimental data

• Run PGAE: The adaptive experiment is run for T̃ periods with precision

threshold c

• Apply a synthetic treatment using Z and obtain synthetic experimental

data

Yis = Yis(0) + τ0 · Zis

Three designs

• Zadaptive : design produced by PGAE with dimension N × T̃

• Zbenchmark : design with ωs = (2s − 1)/(2Tmax) with dimension N × T̃

(optimal when T̃ = Tmax)

• Zoracle : design with ωs = (2s − 1)/(2T̃ ) with dimension N × T̃ (assuming

T̃ is known ex-ante)
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Results for adaptive experiments

• Estimation error of the adaptive design always below variance threshold

1/c

• Adaptive design Zadaptive reduces errors by 20% compared to benchmark

design Zbenchmark

10 15 20 25
Tmax

0.03

0.04

0.05

0.06

0.07

(τ̂
0
−
τ 0

)2

benchmark

oracle

adaptive

variance threshold 1/c
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Termination time in adaptive experiments

For Tmax > 7, the experiment is always terminated quite early

⇒ Desired precision threshold c achieved with less than Tmax/2 duration

5 10 15 20
0

2000

4000

6000
Tmax = 7

5 10 15 20
0

2000

4000

6000
Tmax = 14

5 10 15 20
0

2000

4000

6000
Tmax = 21

5 10 15 20
0

2000

4000

6000
Tmax = 28
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Conclusion



Conclusion

Non-adaptive experiments: N, T and treatment decisions are determined,

pre-experiment

• Analyze the statistical properties of GLS estimator of instantaneous and

lagged effects from a general outcome specification

• Provide analytical optimality conditions that maximize a linear

combination of precisions of estimated treatment effects

• Propose the treatment design that has two features: (1) treatment

fraction takes an S-shaped curve in time; (2) stratification

Adaptive experiments: N is fixed, and experiment duration and treatment

decisions are determined during the experiment

• Propose the Precision-Guided Adaptive Experiment (PGAE) algorithm for

adaptive treatment design and post-experiment inference

• Combines ideas from dynamic programming and sample splitting

• Derive the asymptotic normal distribution of final treatment effect and

variance estimates from PGAE

• Final treatment effect estimate is efficient and achieves the optimal

convergence rate
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D-optimal design
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D-optimal treatment design: Optimal treated proportion ωt at each period for a

T -period treatment design and various ℓ, where T = 10. Different colors represent

different ℓ.



T-optimal design
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T-optimal treatment design: Optimal treated proportion ωt at each period for a

T -period treatment design and various ℓ, where T = 12. Different colors represent

different ℓ.



Expression of ω∗
ℓ,s

ω∗
ℓ,s =



0 s ≤ ⌊ℓ/2⌋
a
(ℓ)
s−⌊ℓ/2⌋ ⌊ℓ/2⌋ < s ≤ ℓ(
2s − (ℓ+ 1)

)
/(2(T − ℓ)) ℓ < s ≤ T − ℓ

1− ω∗
ℓ,T+1−s T − ℓ < s ≤ T − ⌊ℓ/2⌋

1 T − ⌊ℓ/2⌋ < s

(5)



Expression of ω∗
ℓ,s

a(ℓ) is defined as

a(ℓ) = (1 + (M(ℓ))−1b(ℓ))/2,

where M(ℓ) and b(ℓ) are defined as

M(ℓ) =


⌊ℓ/2⌋ + 1

⌊ℓ/2⌋ + 2

.
.
.

ℓ

 −
1

T − ℓ


ℓ − ⌊ℓ/2⌋ ℓ − 1 − ⌊ℓ/2⌋ ℓ − 2 − ⌊ℓ/2⌋ · · · 1

ℓ − 1 − ⌊ℓ/2⌋ ℓ − 1 − ⌊ℓ/2⌋ ℓ − 2 − ⌊ℓ/2⌋ · · · 1

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

1 1 1 · · · 1



b(ℓ) = −


⌊ℓ/2⌋ + 1

.

.

.

ℓ − 1

ℓ

 +
1

T − ℓ



(⌊ℓ/2⌋ + 1)2

.

.

.

(ℓ − 1)2

ℓ2

 −
1

T − ℓ



∑ℓ−⌊ℓ/2⌋
l=1

(⌊ℓ/2⌋ + 1 − l)

.

.

.

2⌊ℓ/2⌋ − 1

⌊ℓ/2⌋





Examples of ω∗
ℓ,s

If ℓ = 1, then

ω∗
ℓ,s = (s − 1)/(T − 1)

If ℓ = 2, then

ω∗
ℓ,1 = 0, ω∗

ℓ,2 = 1/(2T − 5)

ω∗
ℓ,s = (2t − 3)/2(T − 2) for t = 4, · · · ,T − 3,

ω∗
ℓ,T−1 = 1− 1/(2T − 5), ω∗

ℓ,T = 1.

If ℓ = 3, then

ω∗
ℓ,1 = 0, ω∗

2 =
3

6T 2 − 44T + 79
, ω∗

3 =
6(T − 4)

6T 2 − 44T + 79
,

ω∗
t =

t − 2

T − 3
for t = 4, · · · ,T − 3,

ω∗
T−2 = 1− 6(T − 4)

6T 2 − 44T + 79
, ω∗

T−1 = 1− 3

6T 2 − 44T + 79
, ω∗

T = 1.



An algorithm to choose a treatment design

Algorithm 1: Choose a treatment design for each stratum g

1 Inputs: |Og |, [ω∗
ℓ,t ]t∈[T ]

2 for t = 1, · · · ,T do

3 N int
treated,g,t ← ⌊|Og | · ω∗

ℓ,t⌋;
4 Ndec

treated,g,t ← |Og | · ω∗
ℓ,t − N int

treated,g,t ;

5 if Ndec
treated,g,t < 0.5 or Ndec

treated,g,t = 0.5 with t < T/2 then

6 Ng,t ← N int
treated,g,t ;

else

7 Ng,t ← N int
treated,g,t + 1 ;

end

end

8 f (·)← a random function that shuffles {1, 2, · · · , |Og |};
9 Zg ← [0]|Og |×T ;

10 for i = 1, · · · , |Og | do
11 for t = 1, · · · ,T do

12 if f (i) ≤ Ng,t then

zg,it ← 1 ;

else

zg,it = 0 ;

end

end

end

13 return Zg ;



Estimators in adaptive experiments

Three estimators are used in adaptive experiments

Suppose The estimators use the data of units in a set S over t periods

collected so far, where t is small, but set size |S| can be large

1. within estimator for τ0

• Regresses Ẏis on żis based on the specification Ẏis = τ0żis + ε̇is , where for

any variables {xis}(i,s)∈S×[t] (e.g., Yis and zis), and ẋis denotes the within

transformed xis

ẋis = xis − x̄i· − x̄·s + x̄ ,

in which x̄i·, x̄·s , and x̄ are averages of xis ’s over t time periods, units in S,
and both of them, respectively



Estimators in adaptive experiments

2. Plug-in estimator for σ2

σ̂2S,t =
1

|S| · (t − 1)

∑
i∈S

t∑
s=1

(
ẏis − τ̂S,t · żis

)2

• The factor 1/(t − 1) is for finite t correction

• σ̂2S,t is consistent and asymptotically normal for any finite t

3. A new estimator for ξ2 = E[(ε2is − σ2)2]

ξ̂2S,t =
t2

(t − 1)2︸ ︷︷ ︸
correction
multiplier

·
1

|S| · t
∑
i∈S

(
t∑

s=1

[
(ẏis − τ̂S,t · żis)2 − σ̂2S,t

])2

︸ ︷︷ ︸
plug-in estimator of ξ2

−
3t − 2

(t − 1)2
· (σ̂2S,t)

2︸ ︷︷ ︸
correction term

• ξ̂2S,t is consistent for any finite t



Asymptotic distribution for non-adaptive data

Lemma: Asymptotic distribution of estimators from non-adaptive data

Suppose εis is i.i.d. for any i and s with E[εis ] = 0, E[ε2is ] = σ2
ε, E[ε3is ] = 0,

and E[(ε2is − σ2)2] = ξ2. τ̂ntu,t and σ̂2
ntu,t are consistent. As |Sntu| → ∞, for

any finite t, conditional on Zntu, we have√
|Sntu|

([
τ̂ntu,t

σ̂2
ntu,t

]
−
[
τ

σ2

])
d−→ N

([
0

0

]
,

[
σ2/(t · gτ (ωntu,1:t , t)) 0

0 ξ†2t /t

])
,

where ξ†2t = ξ2 + 2
(
σ2

)2
/(t − 1).

Furthermore,
√
|Sntu|

(
ξ̂2t − ξ2

)
= Op(1).

⇒ This lemma is used to prove Theorem 2



Finite sample properties of Theorem 2
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Finite sample properties of Theorem 2: Histograms of τ̂all,ss and σ̂2
atu,2,ss. The

standard normal density function is superimposed on the histograms. N = 500,

τ0 = 1, and σε = 1.



Within estimator for τ0

Least-squares estimator of τ0 from the specification

Yis = αi + βs + τ0zis + εis

is equivalent to the within estimator that regresses Ẏis on żis based on the

specification

Ẏis = τ żis + ε̇is ,

where for any variables {xis}(i,s)∈S×[t] (e.g., Yis and zis), and ẋis denotes the

within transformed xis

ẋis = xis − x̄i· − x̄·s + x̄ ,

in which x̄i·, x̄·s , and x̄ are averages of xis ’s over t time periods, units in S, and
both of them, respectively



Proof of Theorem 2: Key challenge

The estimation error of τ̂all,t(N) depends on εis (using data of N units and t

periods)

τ̂all,T̃ (N)− τ =

 ∑
i∈[N],s≤T̃

ż2is

−1 ∑
i∈[N],s≤T̃

żisεis .

The estimation error of the plug-in estimator for σ2 also depends on εis

σ̂2S,t(N) =
1

|S| · (t − 1)

∑
i∈S

t∑
s=1

(
ẏis − τ̂S,t · żis

)2
=

1

|S|(t − 1)

∑
i,s

ε2is −
t

|S|(t − 1)

∑
i

ε̄2i,· −
1

t − 1

∑
s

ε̄2·,s +
t

t − 1
ε̄2

− (τ̂S,t(N)− τ)2 · 1

|S|(t − 1)

∑
i,s

ż2is

• Key challenge: We need to show τ̂all,T̃ (N) is “well-behaved” even if we

condition on σ̂2S,t(N) that is used to make adaptive treatment decisions

(S = NTU) and experiment termination (S = ATU2)



Proof of Theorem 2: Two key properties

We leverage two critical properties

• First property: Given that εis has a symmetric distribution,

E[εis | σ̂2S,t(N)] = 0

⇒ The asymptotic mean of τ̂all,T̃ (N)− τ0 is zero

• Second property: Given that σ̂2S,t(N) is consistent,

E[ε2is − σ2 | σ̂2S,t(N)] = σ̂2S,t(N)− σ2 converges to zero in probability

⇒ The asymptotic variance of
(
T̃ gτ (ωall,1:T̃ , T̃ )/σ2

)1/2 · (τ̂all,T̃ − τ0
)
is

1 (with probability approaching one, the variance is sufficiently close

one)
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