Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Modelling hominin evolution requires accurate hominin data

Matters Arising to this article was published on 04 July 2022

The Original Article was published on 01 April 2021

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Püschel, H. P., Bertrand, O. C., O’Reilly, J. E., Bobe, R. & Püschel, T. A. Divergence-time estimates for hominins provide insight into encephalization and body mass trends in human evolution. Nat. Ecol. Evol. 5, 808–819 https://doi.org/10.1038/s41559-021-01431-1 (2021).

  2. Dembo, M., Matzke, N. J., Mooers, A. Ø. & Collard, M. Bayesian analysis of a morphological supermatrix sheds light on controversial fossil hominin relationships. Proc. R. Soc. B 282, 20150943–20150949 (2015).

    Article  Google Scholar 

  3. Dembo, M. et al. The evolutionary relationships and age of Homo naledi: an assessment using dated Bayesian phylogenetic methods. J. Hum. Evol. 97, 17–26 (2016).

    Article  Google Scholar 

  4. Kimbel, W. H. Hesitation on hominin history. Nature 497, 573–574 (2013).

    Article  CAS  Google Scholar 

  5. Carter, K., Worthington, S. & Smith, T. M. News and views: non-metric dental traits and hominin phylogeny. J. Hum. Evol. 69, 123–128 (2014).

    Article  Google Scholar 

  6. Mongle, C. S., Strait, D. S. & Grine, F. E. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J. Hum. Evol. 131, 28–39 (2019).

    Article  Google Scholar 

  7. Lee, M. S. Y. Multiple morphological clocks and total-evidence tip-dating in mammals. Biol. Lett. 12, 20160033 (2016).

    Article  Google Scholar 

  8. Ho, S. Y. W. & Phillips, M. J. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367–380 (2009).

    Article  Google Scholar 

  9. Heath, T. A. A hierarchical Bayesian model for calibrating estimates of species divergence times. Syst. Biol. 61, 793–809 (2012).

    Article  Google Scholar 

  10. Barido-Sottani, J. et al. Ignoring fossil age uncertainty leads to inaccurate topology and divergence time estimates in time calibrated tree inference. Front. Ecol. Evol. 8, 183 (2020).

  11. Püschel, H. P., O’Reilly, J. E., Pisani, D. & Donoghue, P. C. J. The impact of fossil stratigraphic ranges on tip‐calibration, and the accuracy and precision of divergence time estimates. Palaeontology 63, 67–83 (2020).

    Article  Google Scholar 

  12. Strait, D. S. & Grine, F. E. Inferring hominoid and early hominid phylogeny using craniodental characters: the role of fossil taxa. J. Hum. Evol. 47, 399–452 (2004).

    Article  Google Scholar 

  13. Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).

    Article  CAS  Google Scholar 

  14. Grine, F. E. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. C. & Stewart, B. A.) 323–381 (Springer, 2016).

  15. Brown, F. H., McDougall, I. & Fleagle, J. G. Correlation of the KHS Tuff of the Kibish Formation to volcanic ash layers at other sites, and the age of early Homo sapiens (Omo I and Omo II). J. Hum. Evol. 63, 577–585 (2012).

    Article  Google Scholar 

  16. Vidal, C. M. et al. Age of the oldest known Homo sapiens from eastern Africa. Nature https://doi.org/10.1038/s41586-021-04275-8 (2022).

  17. Veeramah, K. R. & Hammer, M. F. The impact of whole-genome sequencing on the reconstruction of human population history. Nat. Rev. Genet. 15, 149–162 (2014).

    Article  CAS  Google Scholar 

  18. Henn, B. M., Steele, T. E. & Weaver, T. D. Clarifying distinct models of modern human origins in Africa. Curr. Opin. Genet. Dev. 53, 148–156 (2018).

    Article  CAS  Google Scholar 

  19. Rizal, Y. et al. Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago. Nature 577, 381–385 (2020).

    Article  CAS  Google Scholar 

  20. Pyron, R. A. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst. Biol. 60, 466–481 (2011).

    Article  Google Scholar 

  21. McHenry, H. M. Body size and proportions in early hominids. Am. J. Phys. Anthropol. 87, 407–431 (1992).

    Article  CAS  Google Scholar 

  22. Wood, B. Origin and evolution of the genus Homo. Nature 355, 783–790 (1992).

    Article  CAS  Google Scholar 

  23. McHenry, H. M. Behavioral ecological implications of early hominid body size. J. Hum. Evol. 27, 77–87 (1994).

    Article  Google Scholar 

  24. Boyle, E. K. & Desilva, J. M. A large Homo erectus talus from Koobi Fora, Kenya (KNM-ER 5428), and Pleistocene hominin talar evolution. PaleoAnthropology 1, 1-13 (2015).

  25. Aiello, L. C. & Wood, B. A. Cranial variables as predictors of hominine body mass. Am. J. Phys. Anthropol. 95, 409–426 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.S.M. wrote the initial draft of the paper. K.D.P. carried out the re-analysis of geochronological data. C.S.M., K.D.P., D.S.S. and F.E.G. compiled data and contributed to the writing and revision of the submitted version of the manuscript.

Corresponding author

Correspondence to Carrie S. Mongle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Table 1 and references.

Supplementary Tables

Supplementary Table 2 Hominin first and last appearance dates and Table 3 Differences in divergence date estimates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mongle, C.S., Pugh, K.D., Strait, D.S. et al. Modelling hominin evolution requires accurate hominin data. Nat Ecol Evol 6, 1090–1091 (2022). https://doi.org/10.1038/s41559-022-01791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01791-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing